

Deutsches Forschungszentrum für Gesundheit und Umwelt

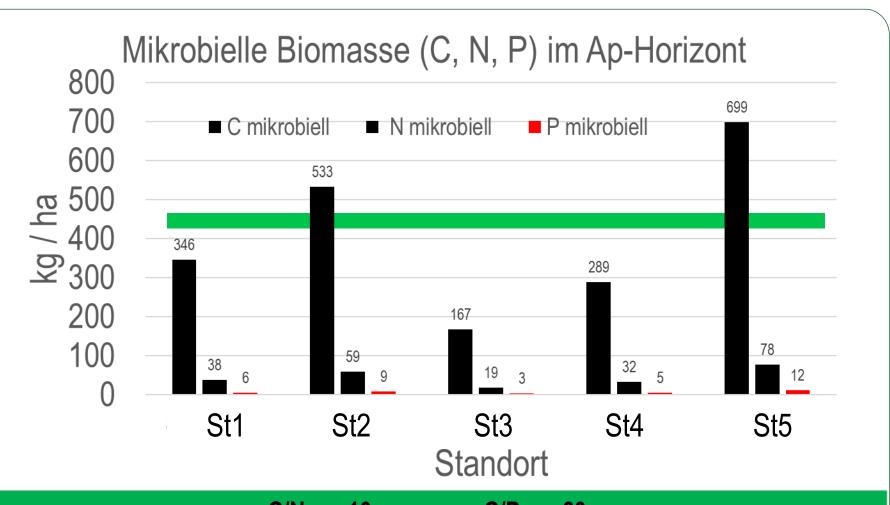
Düngungseinflüsse auf das Bodenmikrobiom

Universität Rostock – Bodenkunde, Pflanzenbau: C. Baum, M. Peine, N. Vitow, A. Zacher,

B. Eichler-Löbermann, P. Leinweber

TU München / HZ – Umweltgenomik: M. Grafe, S. Schulz, M. Schloter

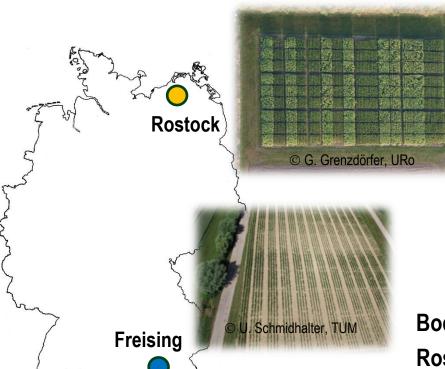
GEFÖRDERT VOM



Düngung als Nährstoffzufuhr für die Bodenmikroorganismen (das Bodenmikrobiom)

- Das Bodenmikrobiom ist ein labiler Nährstoffpool (Schutz vor Nährstoffauswaschung und –festlegung).
- Das Bodenmikrobiom ist die wichtigste Kontrollgröße des Nährstoffrecyclings im Boden.
- In der aktuellen Düngungsplanung sind nur die Pflanzen und der Boden berücksichtigt, dies wird aktuell korregiert (Vogel et al. 2024).

Nährstoffpool mikrobielle Biomasse


C/N ca. 10 C/P ca. 60 ca. 15% der labilen Nährstoffvorräte sind in mikrobieller Biomasse gespeichert

Deutsches Forschungszentrum für Gesundheit und Umwelt

Versuchsflächen:

Einheitliche Düngungsvarianten:

C Kontrolle, keine P-Düngung

ORG Kompost / Gründüngung

MIN Triplesuperphosphat

OMI Kompost / Gründüngung +

Triplesuperphosphat

Bodeneigenschaften:

Rostock Freising

pH (CaCl₂): 6,3

Bodentyp: Parabraunerde

Parabraunerde

6,6

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt

Parameter und Methoden:

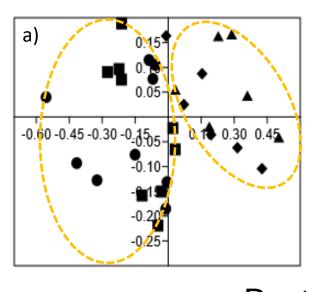
Untersuchung von Boden (0-10 cm) und Pflanzen (Spross und Wurzeln von Mais)

Bodenenzymaktivitäten & mikrobielle Biomasse	Enzymaktivitäten (photometrische Messung) Saure und alkalische Phosphomonoesterasen (ACP, ALP) Phosphodiesterasen (PDE); ß-Glucosidase (GLC) Mikrobielle Biomasse: Cmic, Pmic (Fumigation-Extraktionsmethode)
P-Status Boden & Pflanze	P total (KöWa-Aufschluss), P pflanzenverfügbar (DL, CAL-Extrakt), Ertrag
Mikrobielle Diversität	Bakterien (Metagenomics), arbuskuläre Mykorrhizapilze (Molekulares Fingerprinting)

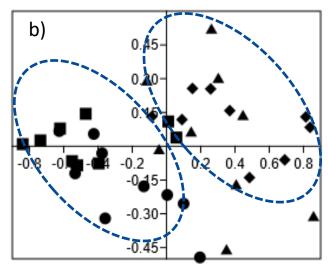
Deutsches Forschungszentrum für Gesundheit und Umwelt

Enzymaktivitätspotenziale (in µmol Produkt g⁻¹ TM Boden h⁻¹)

	ROSTOCK									FREISING							
	Frühling				Herbst				Frühling				Herbst				
2015	С	MIN	ORG	OMI	С	MIN	ORG	OMI	С	MIN	ORG	OMI	С	MIN	ORG	OMI	
ACP	1.33 b	1.39 b	1.70 a	1.65 a	2.11 ab	1.90 °	1.99 bc	2.19 a	1.59 b	1.63 b	2.04 a	2.14 a	1.79 a	1.97 a	1.99 a	1.98 a	
ALP	0.26 b	0.30 b	0.50 a	0.41 a	0.21 bc	0.22 c	0.31 ab	0.34 a	1.99 b	1.72 °	2.32 a	2.37 a	1.95 a	1.18 °	1.63 b	1.42 bc	
PDE	0.11 b	0.11 b	0.21 a	0.23 a	0.11 b	0.08 c	0.14 a	0.13 ab	0.57 a	0.50 b	0.53 ^{ab}	0.59 a	0.55 a	0.43 b	0.51 ab	0.48 ^{ab}	
GLA	0.41 b	0.44 ab	0.51 a	0.50 a	0.43 b	0.45 b	0.53 a	0.49 ab	0.69 b	0.65 b	0.81 a	0.87 a	0.76 a	0.84 a	0.86 a	0.82 a	
2016	С	MIN	ORG	OMI	С	MIN	ORG	OMI	С	MIN	ORG	OMI	С	MIN	ORG	OMI	
ACP	1.92 b	2.14 ab	2.20 a	2.45 a	1.06 b	1.08 b	1.32 a	1.02 b	2.68 a	2.32 ab	2.25 b	2.25 b	1.76 ab	1.65 b	1.85 ^{ab}	1.85 a	
ALP	0.31 b	0.36 b	0.55 a	0.49 a	0.25 a	0.24 a	0.31 a	0.25 a	2.35 a	1.95 b	2.02 b	1.98 b	1.92 a	1.86 a	2.09 a	1.88 a	
PDE	0.19 °	0.19 °	0.31 a	0.26 b	0.06 ^a	0.07 a	0.08 a	0.07 a	0.81 a	0.74 ^{ab}	0.68 b	0.72 ab	0.44 a	0.44 a	0.44 a	0.47 a	
GLA	0.34 b	0.36 b	0.44 a	0.47 a	0.28 ab	0.31 a	0.23 bc	0.20 ^c	0.95 ª	0.85 a	0.84 ^a	0.91 ^a	0.68 ^a	0.67 a	0.70 a	0.74 a	



Deutsches Forschungszentrum für Gesundheit und Umwelt


Aktivitäten von Bodenenzymen im P- und C-Kreislauf

- TSP
- ▲ Kompost / Gründüngung
- ◆ TSP + Kompost / Gründüngung

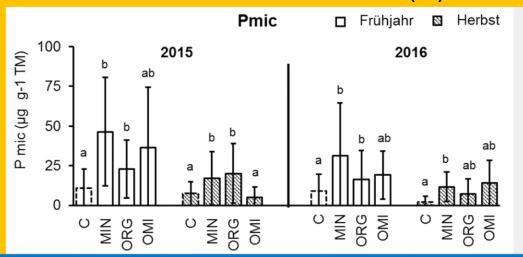
Component 2

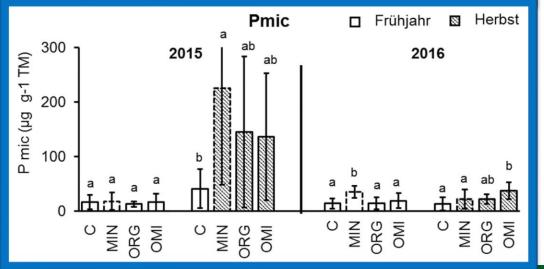
Component 1 Rostock

Component 1

Freising

Principal Component Analysis (PCA) der Aktivitäten von 4 Bodenenzymen (saure und alkalische Phosphatase, Phosphodiesterase, ß-Glucosidase) bei unterschiedlicher Düngung für Frühjahr 2015


Peine et al. (2019)



Deutsches Forschungszentrum für Gesundheit und Umwelt

Mikrobielle Biomasse (P) in 0-10 cm Bodentiefe

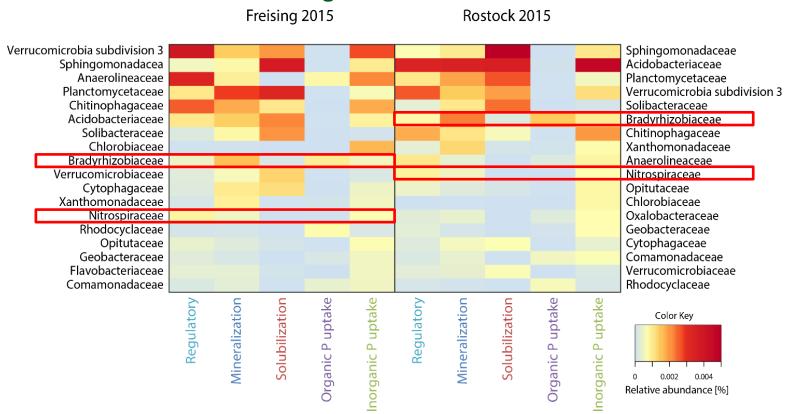
Düngungsvarianten:

C Kontrolle, keine P-Düngung
 ORG Kompost / Gründüngung
 MIN Triplesuperphosphat
 OMI Kompost / Gründüngung + Triplesuperphosphat

Standort: Rostock

zeitweise erhöhte mikrobielle P-Speicherung nach Düngung

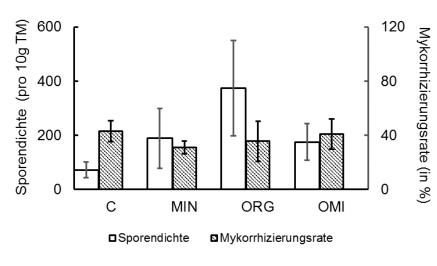
Standort: Freising


Peine et al. (2019)

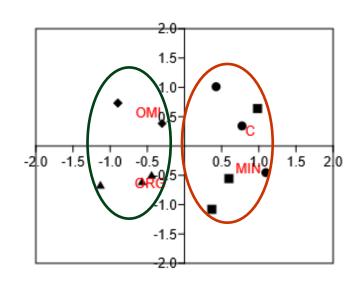
Deutsches Forschungszentrum für Gesundheit und Umwelt

Zusammensetzung der bakteriellen Gemeinschaft

→ standortspezifische Unterschiede, Bradyrhizobiaceae und Nitrospiraceae: gemeinsame Funktion im N- und P-Kreislauf



Deutsches Forschungszentrum für Gesundheit und Umwelt


Abundanz und Diversität der arbuskulären Mykorrhizierung

Component 2

- Kontrolle
- TSP
- ▲ Kompost / Gründüngung
- ◆ TSP + Kompost / Gründüngung

Component 1

Hauptkomponentenanalyse der genetischen Fingerprints der arbuskulären Mykorrhizapilze unter Mais auf dem Feldversuch Rostock

Zusammenfassung:

- Düngung erhöht die mikrobielle Nährstoff-Speicherung
- Organische Düngung erhöht das mikrobielle Potenzial zur Nährstoffmobilisierung
- Düngung steigert die Vermehrung von Mykorrhizapilzen als wertvolle Symbionten
- Signifikante Standortunterschiede in der mikrobiellen Diversität: daher standortspezifische Optimierung notwendig
- Kopplung mikrobieller Umsetzungen in den Stoffkreisläufen

Vielen Dank!

...für Ihre Aufmerksamkeit!

...unseren Kooperationspartnern:

HelmholtzZentrum münchen
Deutsches Forschungszentrum für Gesundheit und Umwelt

Projekt: InnoSoilPhos

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

BONARES

Projekt: TriSick

Das Team Bodenbiologie an der Universität Rostock: Anika Zacher, Elisa Machmüller, Nora Vitow, Nico Krüger, Denny Wiedow, Christel Baum, Frederik Guerndt, Felix Beske