

Thünen-Institut für Agrarklimaschutz

Unterböden mitdenken

Wie landwirtschaftliche Bewirtschaftung die organischen Kohlenstoffvorräte in der Tiefe beeinflusst

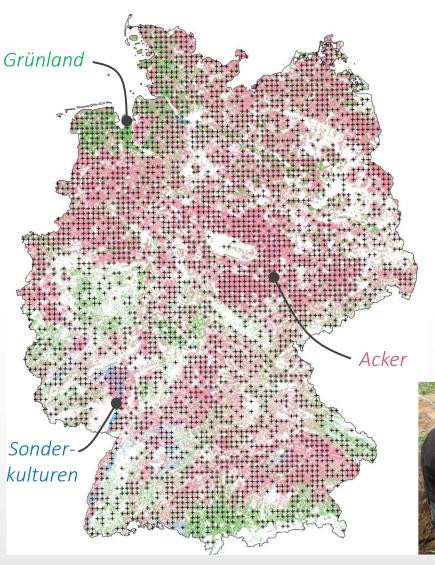
Humus und seine Funktionen

Wasserspeicherung
Bodenstruktur
Erosionskontrolle
Infiltrationsvermögen
Bearbeitbarkeit
Erwärmung
Kohlenstoffspeicherung
Chemische Effekte
Nährstoffquelle
Nährstoffspeicherung
pH-Puffer
Schadstoffretention

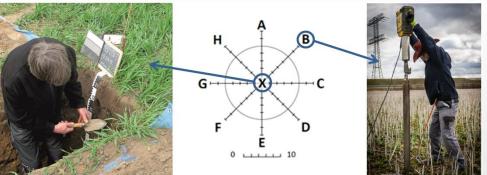
Humus ist der zentrale Indikator für Bodenfruchtbarkeit und Bodengesundheit

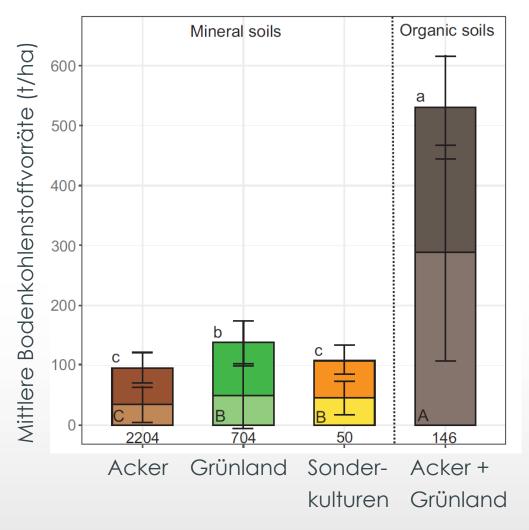
Klimaschutzeffekt ist Nebenprodukt

Phytosanitäre Kontrolle


Bodenleben

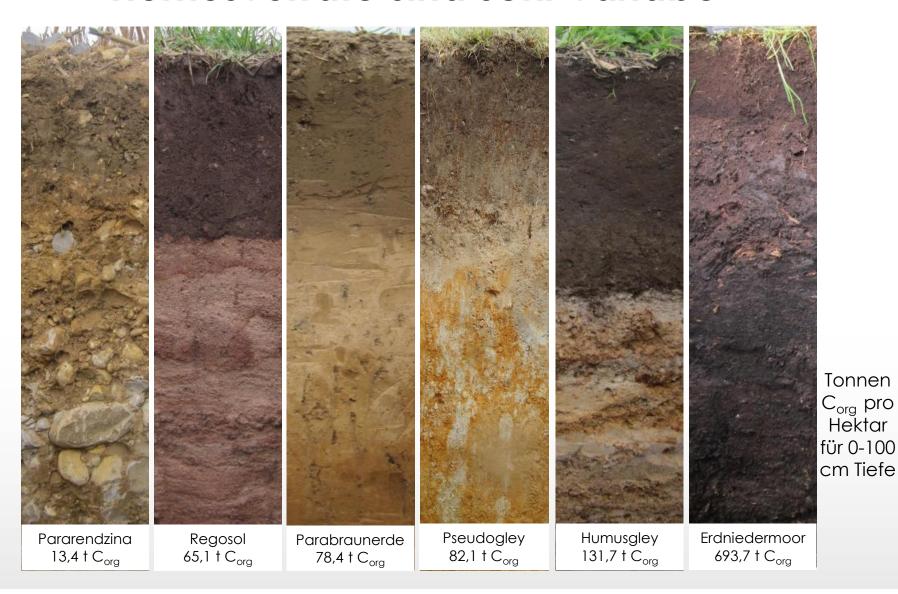
Biodiversität


Biologische Effekte


Kohlenstoffvorräte in Deutschland

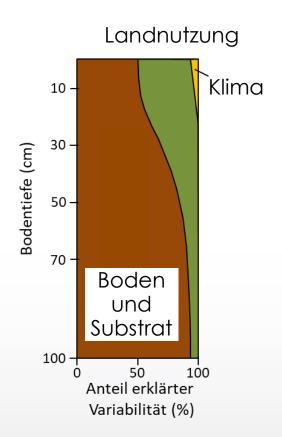
- 2012-2018
- Bodenbeprobung im 8 km × 8 km Raster (3104 Standorte)
- Einheitliche Tiefenstufen:
 - 0-10, 10-30, 30-50, 50-70, 70-100 cm
- 124.000 Bodenproben

Mittlere Vorräte an organischem Kohlenstoff



- Moorböden speichern 5 × mehr C_{org} als Mineralböden (0-100 cm)
- Mineralböden (0-100 cm):
 - Grünland speichert 40% mehr C_{org} als Äcker

Poeplau et al. 2020, JPNSS



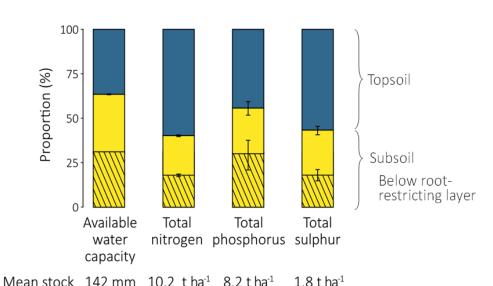
Humusvorräte sind sehr variabel

Was erklärt die räumliche Variabilität der C_{org}-Vorräte?

Vos et al. 2019, EJSS

- C_{org}-Vorrat in Mineralböden wird auf der Skala Deutschlands primär durch Boden- und Standortfaktoren bestimmt
 - u. a. Tongehalt, Grundwasserstufe, Ausgangssubstrat
- Nur im Oberboden zeigt sich ein signifikanter Einfluss der Landnutzungsart (Acker, Grünland)

Unterböden – eine schlummernde Ressource?



Unterböden sind unterrepräsentiert in bodenkundlichen Studien und in der landwirtschaftlichen Bewirtschaftung

Aber...

...sie haben großes Potenzial!

- Unterböden speichern mehr als 30% der Gesamtmenge C_{ora}
- Unterböden beherbergen 30-50 % der Nährstoffe <u>und</u>
- 60 % des pflanzenverfügbaren Wassers

Schneider et al. 2020

Unterböden sind entscheidend für die Anpassung der landwirtschaftlichen Bewirtschaftung an Klimaveränderungen. Unterbodenressourcen müssen für Wurzeln jedoch zugänglich sein!

Was wollten wir herausfinden?

Wie stark und wie tief beeinflusst die Bewirtschaftung die C_{org}-Vorräte im Ober- und im Unterboden?

Beprobte Dauerfeldversuche

Dikopshof (DDV	()	9.7	634	Luvisol	Silty loam	Loess	1904
Dahlem (Bda_D3	3)	9.6	540	Luvisol	Loamy sand	Periglacial sand	1923
Thyrow 1 (Thy_D)1)	9.2	510	Cutanic Albic Luvisol	Sand	Periglacial sand	1937
Thyrow 2 (Thy_D4	41)	9.2	510	Cutanic Albic Luvisol	Sand	Periglacial sand	1937
Gießen 1 (EV)		Mittl. Durschnittstemp.: 8.1-9.7 C					
Gießen 1 (EV) 9.2 510 Cutanic Albic Luvisol Sand Periglacial sand 1937 C Mittl. Durschnittstemp.: 8.1-9.7 Mincheberg (V 140) 8.4 Mittl. Niederschlagsmenge: 510-820 mm 63 Göttingen (Garte-Süd) 8.7 645 Luvisol Clayey loam Loess 1970							63
Göttingen (Garte-Süd)		_{8.7} Da	uer: 32	Luvisol	Clayey loam	Loess	1970
Dürnast (D-II)		8.4	820	Cambisol	Sandy loam to loam	Cover sand	1978
Gießen 2 (BSG)		9.0	650	Fluvic Gleyic Cambisol	Silty clay	Floodplain sediments	1982
Rauischholzhausen (IOSDV)		8.1	595	Luvisol	Silty loam	Alluvial sediments	1984
10	Laura Skadell Unterböden mitdenken – Einfluss landwirtschaftlicher Bewirtschaftung auf die org. Kohlenstoffvorräte						

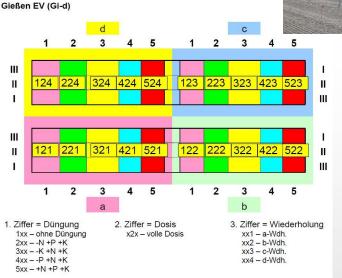
Major soil group (IUSS, 2015)

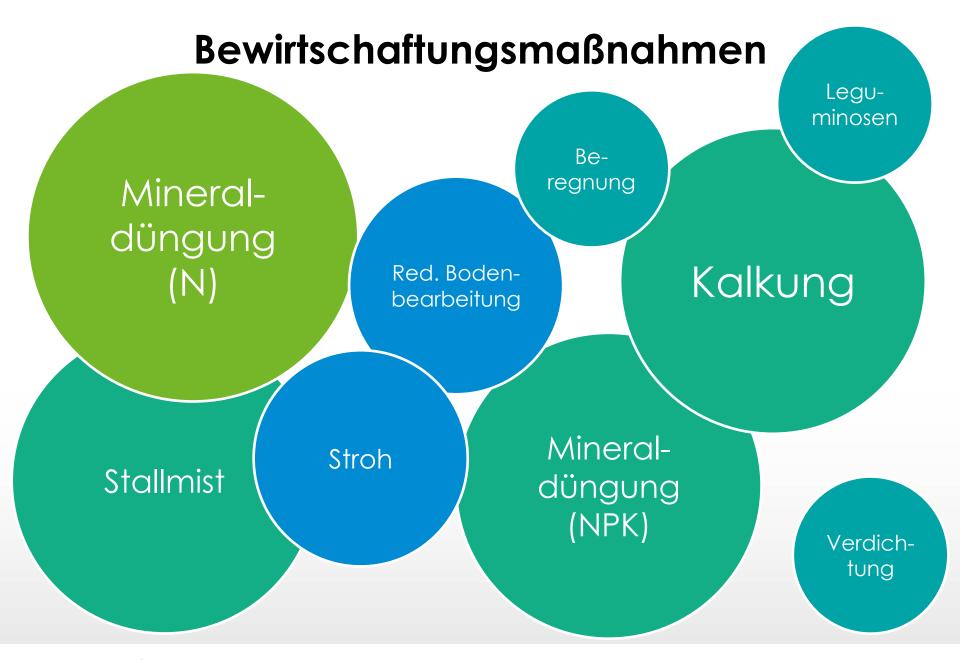
Texture

Parent material

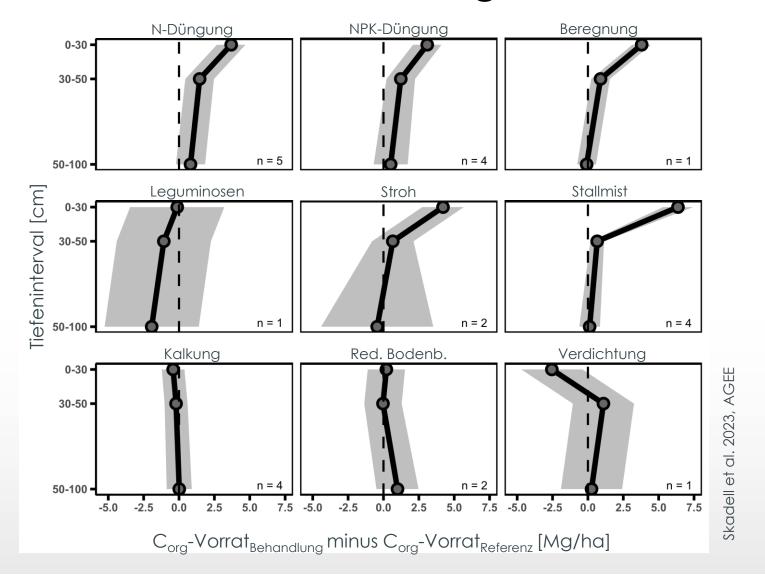
Start year

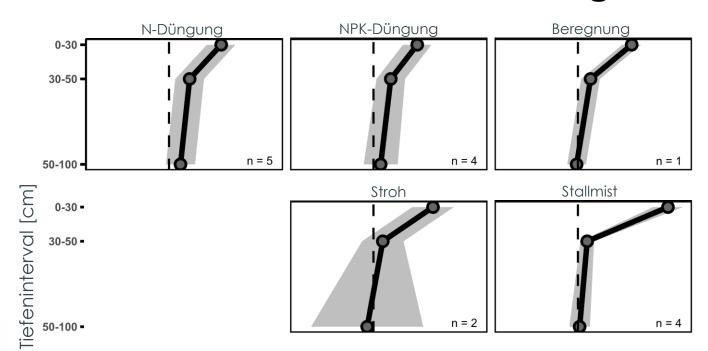
MAT [°C]

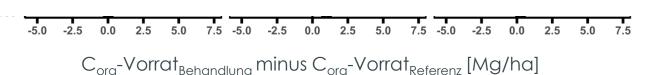

Long-term experiment

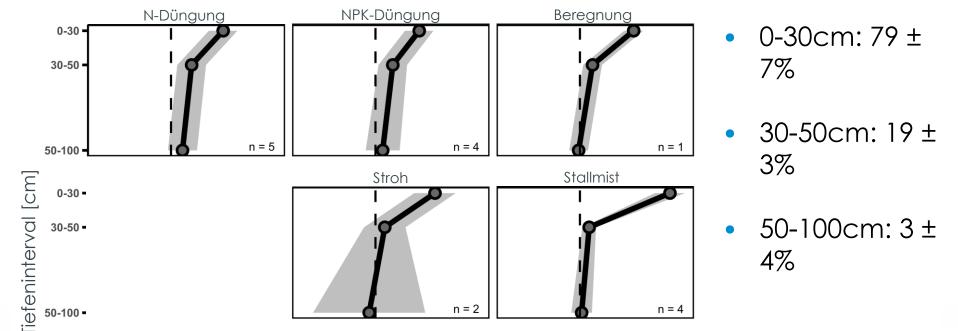

MAP [mm yr⁻¹]

Beprobung

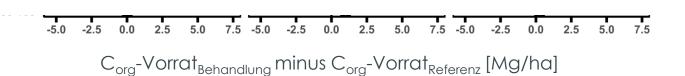

- 1-3 Rammkernsonden pro Parzelle
- 8-32 Pseudoreplikate pro Versuch, Behandlung und Tiefenstufe
- Bodenkerne wurden in 4 Intervalle geschnitten:
 - 0-30 cm, 30-50 cm, 50-70 cm, 70-100 cm
 - Zusätzliche Schnitte an Horizontgrenzen






N, NPK, Beregnung, Stallmist and Stroh hatten signifikante Effekte auf C_{org}-Vorräte im Oberboden

Signifikant höhere Effekte auf C_{org} -Vorräte in 0-50 cm als 0-30 cm


~ 20 % der landwirtschaftl. Bewirtschaftungseffekte im Unterboden

Särkste Unterbodeneffekte durch Mineraldüngung, gefolgt von Beregnung und org. Düngung

Ursache für erhöhte C_{org}-Vorräte: Anstieg der Nettoprimärproduktion und erhöhter Eintrag von Ernterückständen

75% des gesamten C_{org}-Eintrags durch Mineraldüngung war auf unterirdische Biomasse (Wurzeln) zurückzuführen

Warum hatte org. Düngung die geringsten Unterboden-C_{org}-Effekte?

89 % im Oberboden

Einarbeitung in max. 30 cm

 C_{org} benötigt Zeit, um in größere Tiefen zu gelangen (via Bioturbation, gelöstes C_{org})

Wurzeln für den Humusaufbau

 Wurzeln bauen 2-3 mal so viel Humus auf wie die gleiche Menge oberirdischer Biomasse

Wurzeln für den Humusaufbau

- Ernterückstände, v.a. Wurzeln wichtig für den Aufbau der C_{org}-Vorräte
- Wurzeln müssen die Möglichkeit haben in den Unterboden zu verwurzeln
- Wurzelhemmende Schichten können dies einschränken oder verhindern

Was können wir schlussfolgern?

- Landwirtschaftliche
 Bewirtschaftungseffekte sind bis in 50 cm
 Tiefe nachweisbar
- 20% des Gesamteffekts im Unterboden
- Mineraldüngung, Beregnung und org. Düngung zeigten die größten Effekte auf die C_{ora} -Vorräte bis in 50 cm Tiefe
- Probenahmen sollten standardmäßig bis in 50 cm Tiefe erfolgen

Laura Skadell - Thünen-Institut für Agrarklimaschutz

Vielen Dank für Ihre Aufmerksamkeit!

