

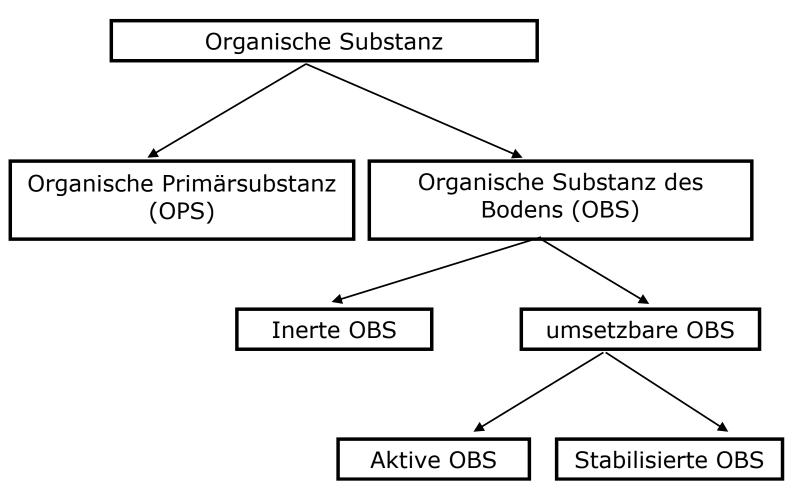
Gliederung

Was ist Humus

Übersicht Dauerfeldversuche an der Humboldt-Universität zu Berlin

Standort Thyrow

Statischer Nährstoffmangelversuch Thyrow


Nährstoffmangelversuch Winterroggen

Statischer Bodenfruchtbarkeitsversuch

Zusammenfassung

Was ist Humus?

Fraktionen der organischen Bodensubstanz (Körschens et al. 1997)

Gehalte an Organischer Bodensubstanz (OBS) in Abhängigkeit der Bodenart

Bodenart	Tongehalt (%)	OBS (%)	C _{org} -Gehalt (%)
Sand	0 - 17	1,0 – 1,8	0,6 - 1,0
Lehm	12 – 35	2,5-4,6	1,4 – 2,6
Ton	45 – 65	5,3	3,0

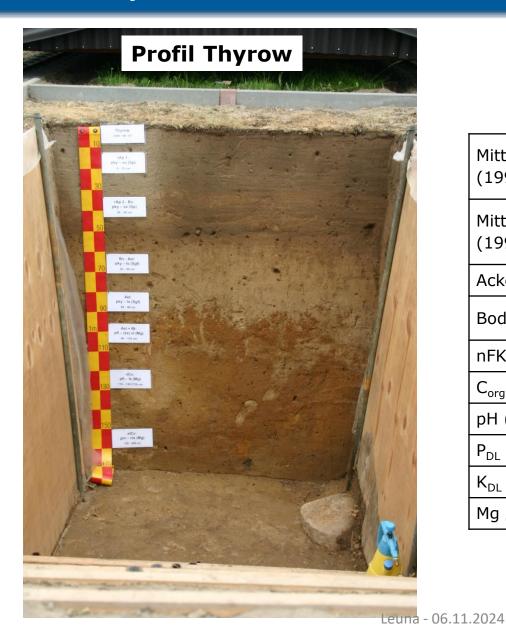
n. Kundler 1989

Dauerfeldversuche der Humboldt-Universität zu Berlin

1923	Bodenbearbeitungs- Kalk- P- und Stallmistdüngungsversuch (D III)	Dahlem
1937	Statischer Nährstoffmangelversuch (D IV/1)	Thyrow
1938	Statischer Bodenfruchtbarkeitsversuch (D VI)	Thyrow
1953	Agrarmeteorlogisches Ertragsmessfeld (E-Feld)	Dahlem
1969	Beregnungs- und Düngungsversuch (D I)	Thyrow
1973	Fruchtfolge- und Strohdüngungsversuch (D V)	Thyrow
1986	Internationaler organischer und Stickstoffdüngungsdauerversuch (IOSDV)	Dahlem
1998	Nährstoffmangelversuch Winterroggen (D IV/2)	Thyrow

Dauerversuchsparzellen 578

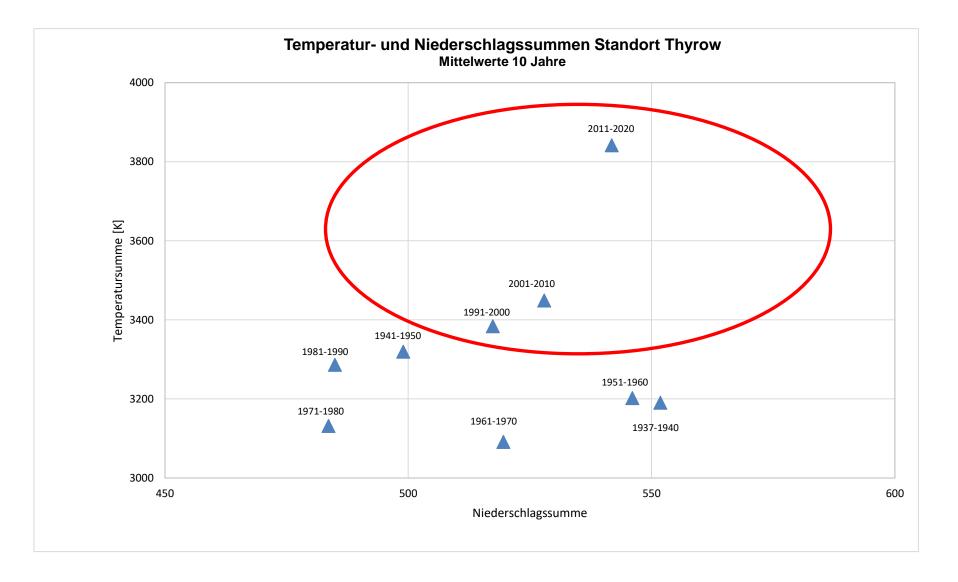
Thyrow	376	Corg-Untersuchungen jährlich seit 1965
Dahlem	202	Corg-Untersuchungen jährlich seit 2006

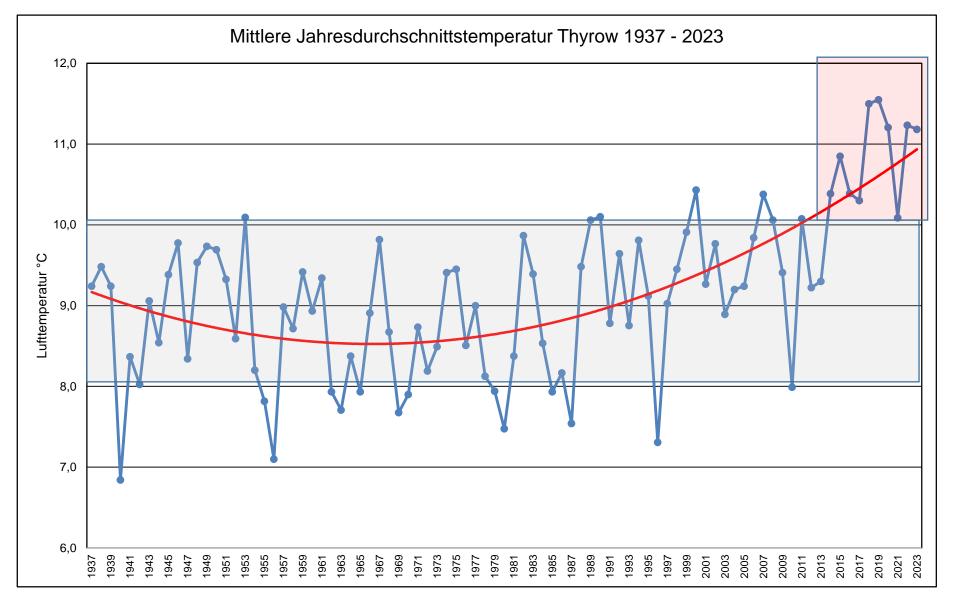


Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften

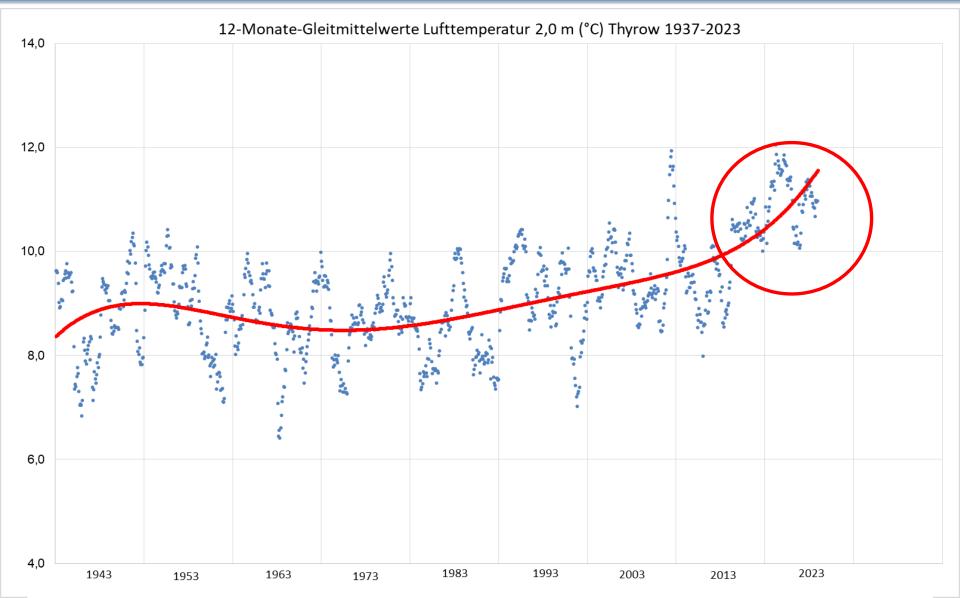
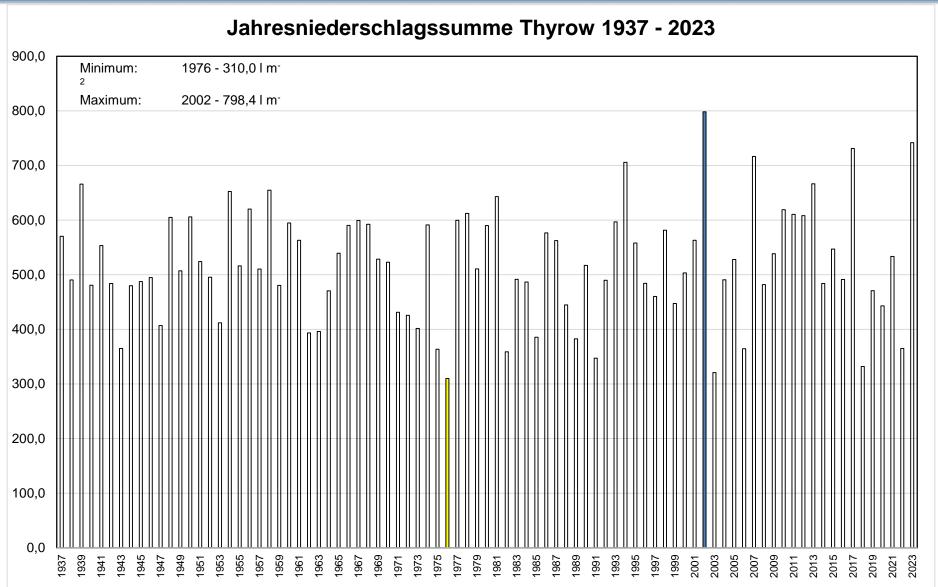
8

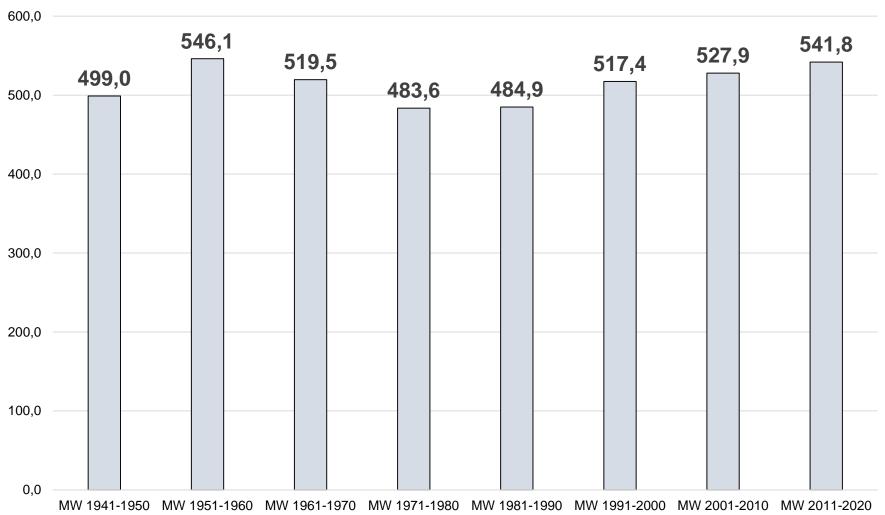
Mittlere Lufttemperatur 2m (1991 – 2020) (°C)	9,7
Mittlerer Jahresniederschlag (1991 – 2020) (mm)	532,6
Ackerzahl	25
Bodenart	Schwach schluffiger Sand
nFK (Vol%)	11,3
C _{org} (mg 100g Boden ⁻¹)	580
pH (0-30 cm)	5,4 - 5,8
P _{DL} (mg 100g Boden ⁻¹)	5,6 - 8,0
K _{DL} (mg 100g Boden ⁻¹)	6,0 - 9,0
Mg _{CaCl2} (mg 100g Boden ⁻¹)	3,6 - 5,0


1.2024


Klima und Witterung

Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften


Diagramm nach Schellnhuber "SELBSTVERBRENNUNG - Die fatale Dreiecksbeziehung zwischen Klima, Mensch und Kohlenstoff"

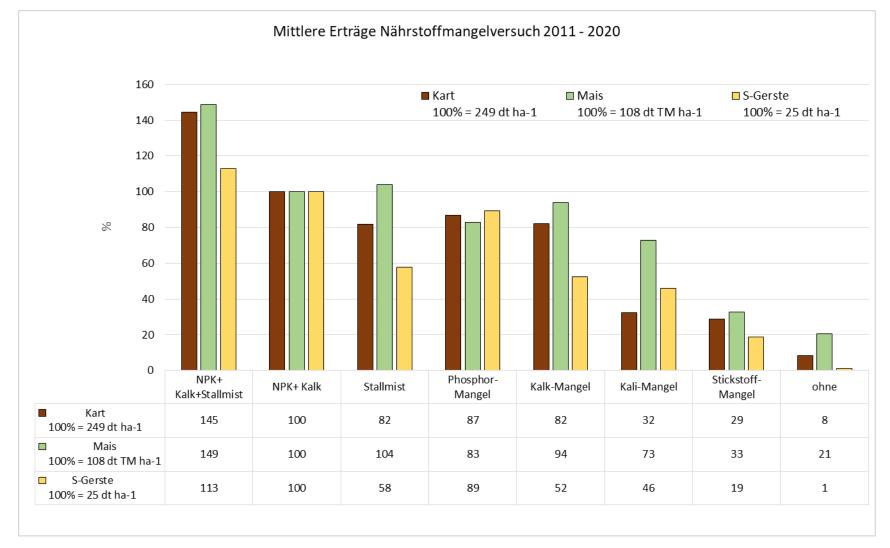
Historie des Statischer Nährstoffmangelversuch

- 1937 Anlage als Statischer Nährstoffmangel Dauerversuch
- 1948 Teilung des Versuchs und Aufdüngung der Mangelparzellen auf dem Teilstück 2
- 1959 Einführung von Silomais in die Fruchtfolge
- 1959 Erneute Aufnahme der Mangeldüngung auf Teilstück 2
- 1972 Aufdüngung der Mangelparzellen auf Teilstück 2
- 1974 Einführung N-Stufe 2 (120 kg ha⁻¹ N) auf Teilstück 2
- 1998 Einführung der Winterroggenmonokultur und Mangeldüngungsparzellen auf dem Teilstück 2

Statischer Nährstoffmangelversuch Thyrow Anlage 1937

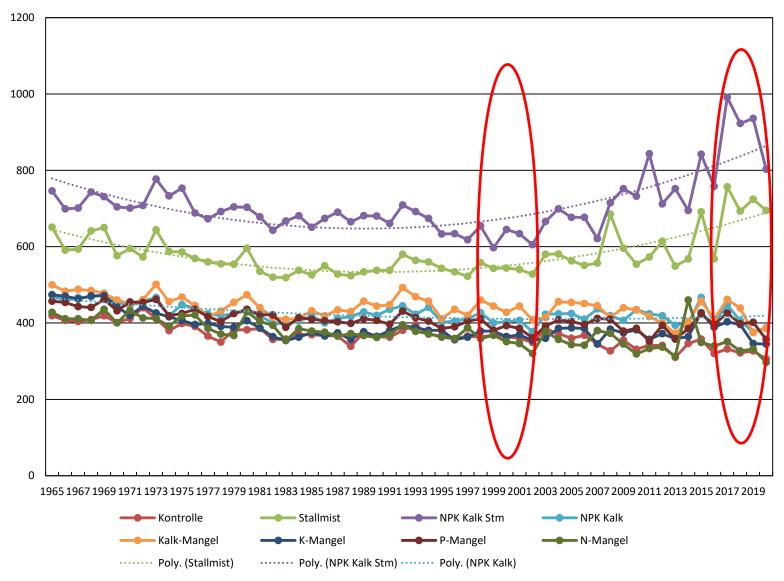
Prüfglieder	mineralisch	organisch	kg ha ⁻¹	N kg ha ⁻¹	P kg ha ⁻¹	K kg ha ⁻¹
ohne Düngung			0	0	0	0
organisch		Stallmist *	30.000	0	0	0
organisch-mineralisch	NPK + Kalk **	Stallmist *	30.000	60 / 90	24	100
Mineralisch	NPK + Kalk **		0	60 / 90	24	100
Kalkmangel	NPK		0	60 / 90	24	100
Kaliummangel	NP- + Kalk **		0	60 / 90	24	0
Phosphormangel	N-K + Kalk **		0	60 / 90	0	100
Stickstoffmangel	-PK + Kalk **		0	0	24	100

^{*} Stallmist alle 2 Jahre zur Blattfrucht


60 kg ha⁻¹ N zum Getreide 90 kg ha⁻¹ N zur Blattfrucht

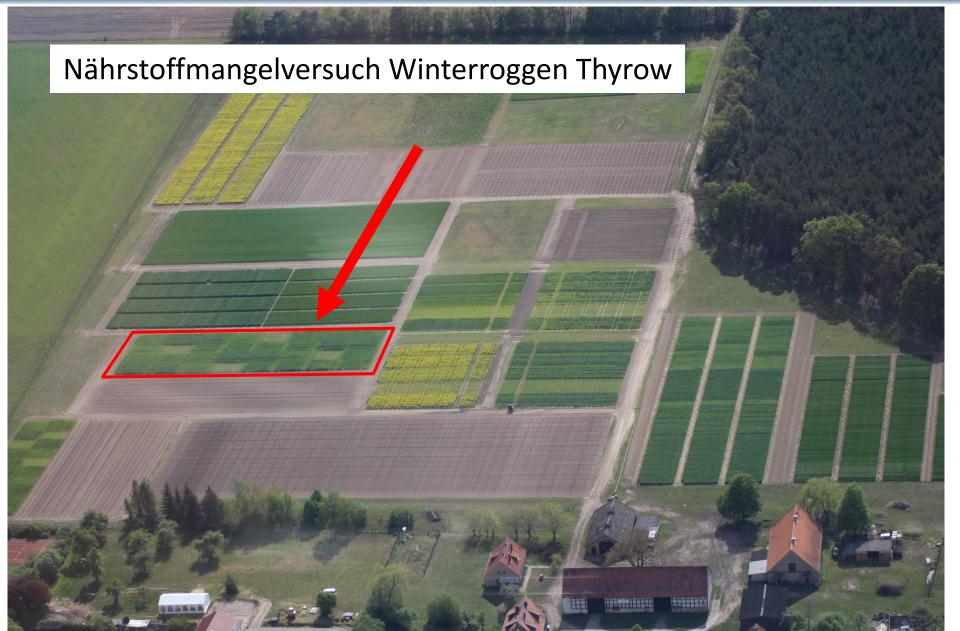
Fruchtfolge: Kartoffeln – Sommergerste – Silomais - Sommergerste

^{**} Kalk nach Bedarf Ziel pH-Wert 5,5



Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften

SOC in mg/100 g Boden Statischer Nährstoffmangelversuch Thyrow



Corg-Gehalte (mg 100g Boden⁻¹) Statischer Nährstoffmangelversuch Thyrow 1998 zu 2020

Prüfglieder	mineralisch	organisch	1998/2001	2017/2020	17/20 zu 98/01
ohne Düngung			364	322	88 %
organisch		Stallmist	546	717	131 %
organisch-mineralisch	NPK + Kalk **	Stallmist	633	913	144 %
Mineralisch	NPK+ Kalk **		409	404	99 %
Kalkmangel	NPK		444	416	94 %
Kaliummangel	NP- + Kalk **		373	373	100 %
Phosphormangel	N-K + Kalk **		393	396	101 %
Stickstoffmangel	NPK+ Kalk **		356	327	92 %

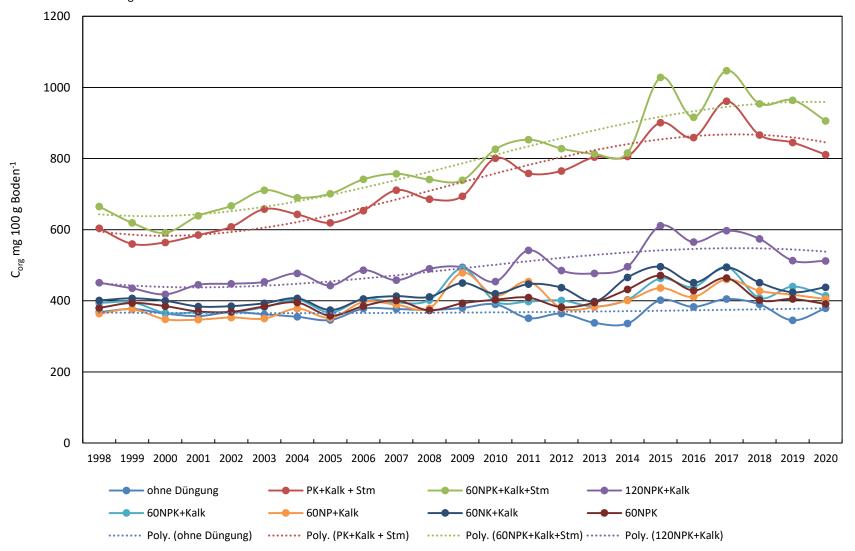
Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften

Nährstoffmangelversuch Winterroggen Thyrow Anlage 1937/1998

Prüfglieder	Düngung mineralisch	Düngung organisch	Stallmist kg ha ⁻¹	N kg ha ⁻¹	P kg ha ⁻¹	K kg ha ⁻¹
ohne Düngung			0	0	0	0
organisch	PK + Kalk **	Stallmist	15.000	0	24	100
organisch-mineralisch	NPK + Kalk **	Stallmist	15.000	60	24	100
Mineralisch	NPK + Kalk **		0	60	24	100
Mineralisch	N2PK+ Kalk **		0	120	24	100
Kaliummangel	NP- + Kalk **		0	60	24	0
Phosphormangel	N-K + Kalk **		0	60	0	100
Kalkmangel	NPK		0	60	24	100

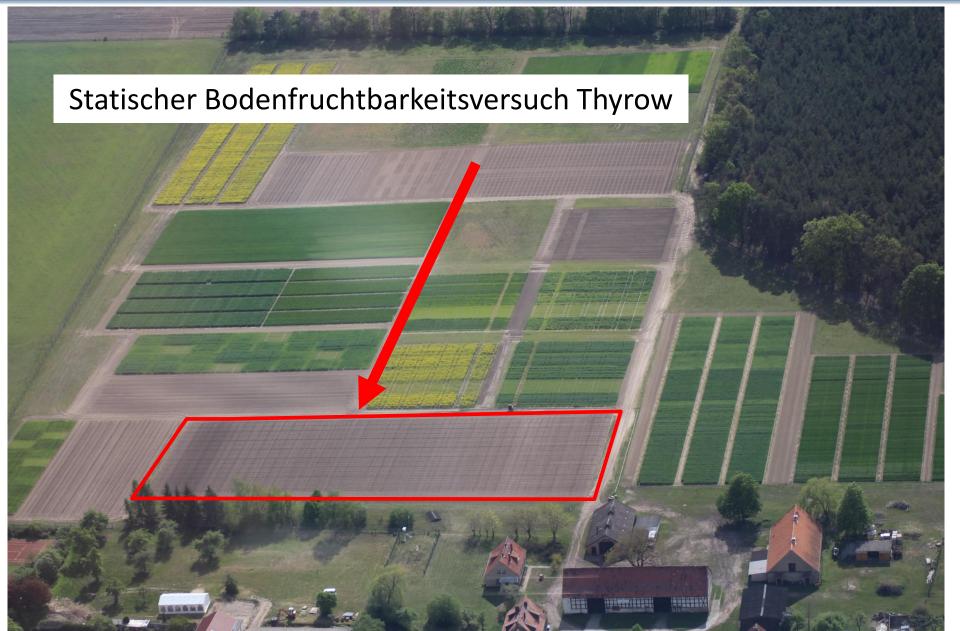
^{**} Kalk nach Bedarf Ziel pH-Wert 5,5

Fruchtfolge: Winterroggen – Monokultur seit 1998


Kornertrag Winterroggen (dt ha⁻¹)

Prüfglieder	mineralisch	organisch	1998	2020		
ohne Düngung			13,1	10,0	76 %	
organisch	PK + Kalk **	Stallmist	25,2	44,9	178 %	
organisch-mineralisch	NPK + Kalk **	Stallmist	40,7	54,0	133 %	
Mineralisch	N2PK+ Kalk **		41,0	47,7	116 %	
Mineralisch	NPK+ Kalk **		36,5	35,7	98 %	
Kaliummangel	NP- + Kalk **		35,0	30,5	87 %	
Phosphormangel	N-K + Kalk **		37,4	33,9	91 %	
Kalkmangel	NPK		36,8	34,2	93 %	

^{**} Kalk nach Bedarf Ziel pH-Wert 5,5



Corg-Gehalte (mg 100g Boden⁻¹) Nährstoffmangelversuch Winterroggen 1998 zu 2020

Prüfglieder	mineralisch	organisch	1998/2001	2017/2020	17/20 zu 98/01
ohne Düngung			367	380	104 %
organisch	PK + Kalk **	Stallmist	578	871	151 %
organisch-mineralisch	NPK + Kalk **	Stallmist	629	968	154 %
Mineralisch	N2PK+ Kalk **		437	549	126 %
Mineralisch	NPK + Kalk **		381	439	115 %
Kaliummangel	NP- + Kalk **		359	428	119%
Phosphormangel	N-K + Kalk **		398	452	114 %
Kalkmangel	NPK		382	416	109 %

^{**} Kalk nach Bedarf Ziel pH-Wert 5,5

Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften

Statischer Bodenfruchtbarkeitsversuch Thyrow Anlage 1938

Prüfglieder	Düngung mineralisch	Düngung organisch	kg ha ⁻¹	N1 kg ha ⁻¹	N2 kg ha ⁻¹	N3 kg ha ⁻¹
organisch	Kalk	Stallmist 1 (1995)	20.000	0	60	120
mineralisch	NPK + Kalk		0	0	60	120
organisch-mineralisch	NPK + Kalk	Stallmist 1	20.000	0	60	120
organisch-mineralisch	NPK + Kalk	Stallmist 2	40.000	0	60	120
organisch-mineralisch	NPK + Kalk	Gründüngung (GD)	n. A.	0	60	120
organisch-mineralisch	NPK + Kalk	GD + Stallmist 1	20.000	0	60	120
organisch-mineralisch	NPK + Kalk	GD + Stroh m. NA	n. A.	0	60	120
organisch-mineralisch	NPK + Kalk	Stroh m. NA	n. A	0	60	120
organisch-mineralisch	NPK + Kalk	Stroh	n. A	0	60	120
organisch-mineralisch / Ton	NPK + Kalk	Stallmist 1	20.000	0	60	120

Ton = Oderbruchboden 1939 und 1940, Stroh-Prüfglieder seit 1974, N-Ausgleich = 0,7 kg N dt⁻¹ Stroh

Fruchtfolge seit 2005: Silomais - Winterroggen

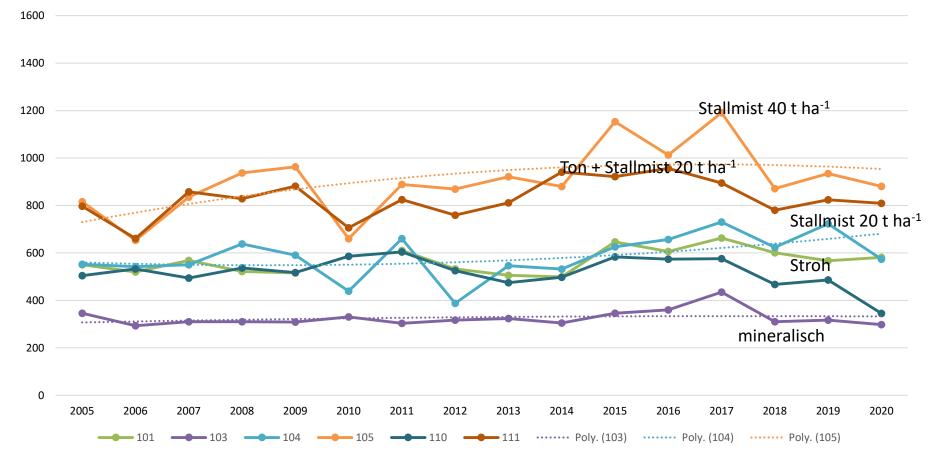
Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften

Statischer Bodenfruchtbarkeitsversuch Mittelwerte TM-Ertrag (dt ha⁻¹) Silomais 2015/2023

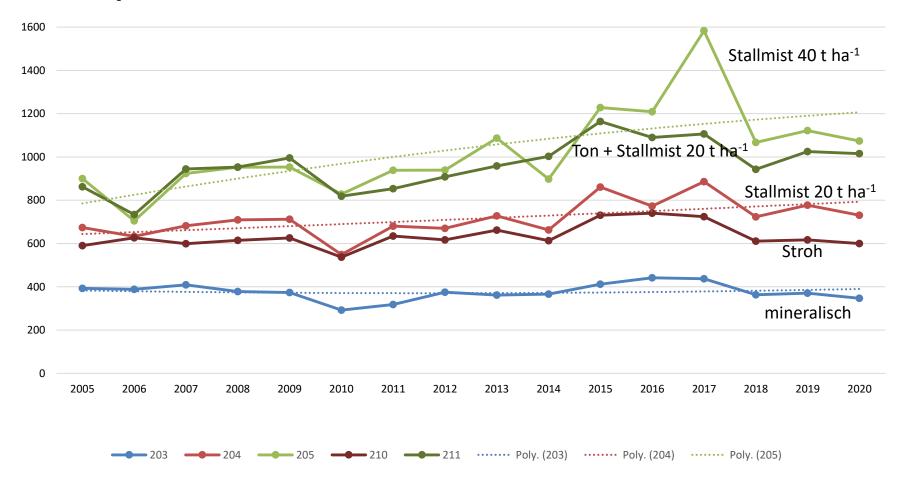
Prüfglieder	Düngung mineralisch	Düngung organisch	kg ha ⁻¹	N1 dt TM ha ⁻¹	N2 dt TM ha ⁻¹	N3 dt TM ha ⁻¹
organisch	Kalk	Stallmist 1 (1995)	20.000	87,4	-	-
mineralisch	NPK + Kalk		0	30,0	92,8	115,7
organisch-mineralisch	NPK + Kalk	Stallmist 1	20.000	95,0	141,7	154,4
organisch-mineralisch	NPK + Kalk	Stallmist 2	40.000	147,5	163,2	175,0
organisch-mineralisch	NPK + Kalk	GD	0	54,9	124,7	133,5
organisch-mineralisch	NPK + Kalk	GD + Stallmist 1	20.000	118,5	160,2	168,1
organisch-mineralisch	NPK + Kalk	GD + Stroh m. NA	n. A.	62,5	143,8	145,4
organisch-mineralisch	NPK + Kalk	Stroh m. NA	n. A	52,6	131,0	148,4
organisch-mineralisch	NPK + Kalk	Stroh	n. A	53,2	128,2	152,3
organisch-mineralisch / Ton	NPK + Kalk	Stallmist 1	20.000	115,2	152,4	168,4

Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften

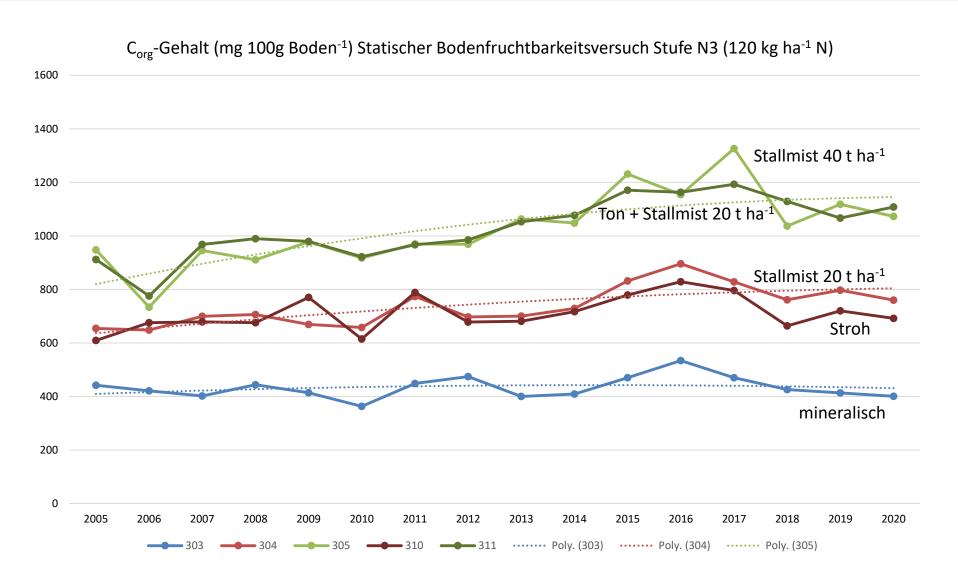
Statischer Bodenfruchtbarkeitsversuch Mittelwert Korn-Ertrag (dt ha⁻¹) Winterroggen 2014/2022


Prüfglieder	Düngung mineralisch	Düngung organisch	kg ha ⁻¹	N1 dt TM ha ⁻¹	N2 dt TM ha ⁻¹	N3 dt TM ha ⁻¹
organisch	Kalk	Stallmist 1 (1995)	20.000	17,7	-	-
mineralisch	NPK + Kalk		0	6,7	33,6	45,2
organisch-mineralisch	NPK + Kalk	Stallmist 1	20.000	16,9	44,3	55,2
organisch-mineralisch	NPK + Kalk	Stallmist 2	40.000	33,1	55,1	61,1
organisch-mineralisch	NPK + Kalk	GD	0	8,1	38,7	51,4
organisch-mineralisch	NPK + Kalk	GD + Stallmist 1	20.000	20,1	48,9	58,8
organisch-mineralisch	NPK + Kalk	GD + Stroh m. NA	n. A.	9,6	43,4	59,3
organisch-mineralisch	NPK + Kalk	Stroh m. NA	n. A	8,7	40,6	56,4
organisch-mineralisch	NPK + Kalk	Stroh	n. A	11,9	36,5	55,9
organisch-mineralisch / Ton	NPK + Kalk	Stallmist 1	20.000	24,8	53,8	63,3

GD – kruzifere Sommerzwischenfrucht (Senf)



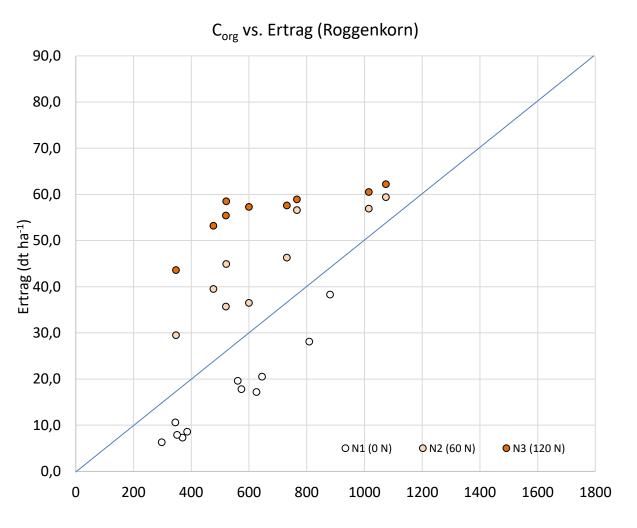
C_{org}-Gehalt (mg 100g Boden⁻¹) Statischer Bodenfruchtbarkeitsversuch Stufe N1 (0 kg ha⁻¹ N)



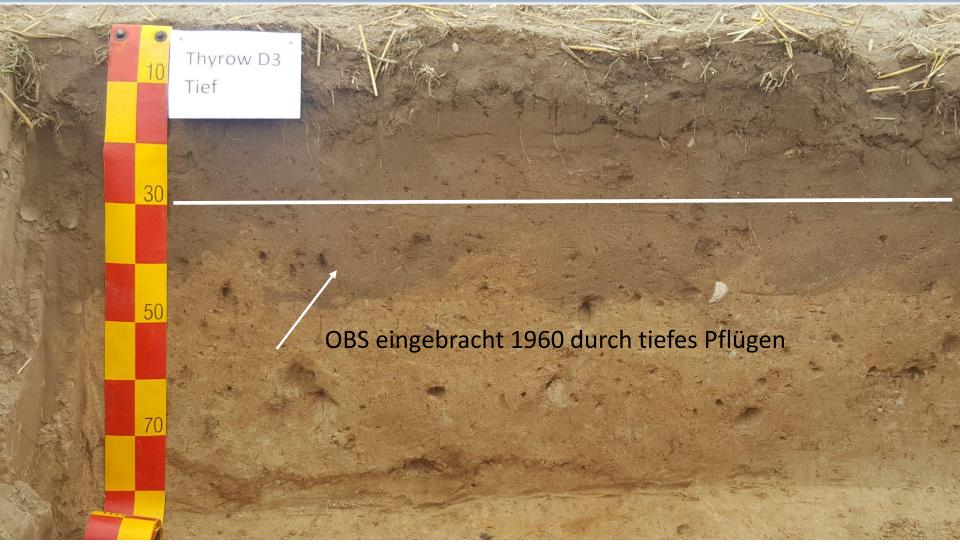
C_{org}-Gehalt (mg 100g Boden⁻¹) Statischer Bodenfruchtbarkeitsversuch Stufe N2 (60 kg ha⁻¹ N)

Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften


Kohlenstoffgehalt des Bodens vs. Ertrag


C_{org} vs. Ertrag (TM-Ertrag Silomais)

Leuna - 06.11.2024



C_{org} (mg 100 g Boden⁻¹) Leuna - 06.11.2024

Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften

Zusammenfassung

Die Klimaveränderung ist messbar und zeigt sich im Osten Deutschlands durch höhere mittlere Temperaturen der Luft, bei unveränderter Höhe der Niederschläge. Die Folge des Temperaturanstiegs sind längere Phasen ohne Niederschlag, die die Produktivität der ackerbaulich genutzten Böden negativ beeinflussen.

Die Austrocknung der Böden in der Vegetationszeit über längere Zeiträume minimiert die biologische Aktivität der Böden, welche zu einem Anstieg der Kohlenstoffgehalte in den Böden führt.

Der Kohlenstoffgehalt von ackerbaulich genutzten Böden ist vom Nährstoff-Input, vor allem Stickstoff, abhängig und wird somit vom Bewirtschaftungssystem beeinflusst.

Die Ertragshöhe wird nicht vom Kohlenstoffgehalt des Boden bestimmt.

Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften

Praxisinformationstag Thyrow 23.05.2025

Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften

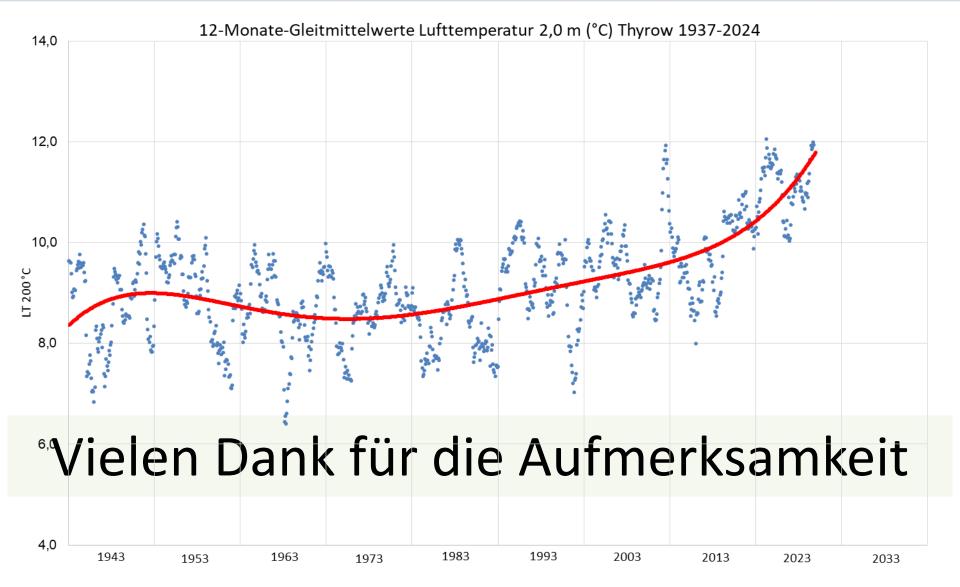


Diagramm nach Schellnhuber "SELBSTVERBRENNUNG - Die fatale Dreiecksbeziehung zwischen Klima, Mensch und Kohlenstoff"

Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften Lehr- und Forschungsstation Pflanzenbauwissenschaften

Roß, C.-L.; Baumecker, M.; Ellmer, F.; Kautz, T. Organic Manure Increases Carbon Sequestration Far beyond the "4 per 1000 Initiative" Goal on a Sandy Soil in the Thyrow Long-Term Field Experiment DIV.2. Agriculture 2022, 12, 170.

https://doi.org/10.3390/agriculture12020170