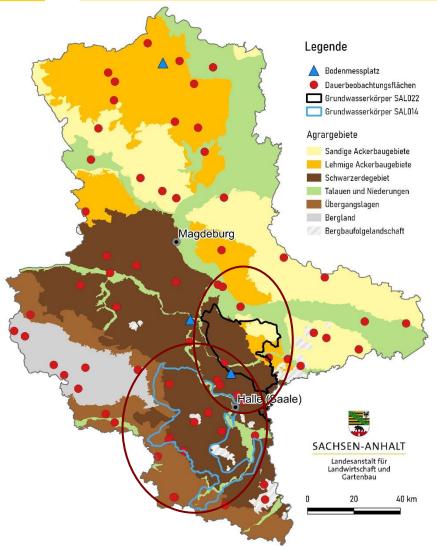


Aktuelle Ergebnisse Wirkungsmonitoring DüV aus der Modellregion Köthener Ackerland

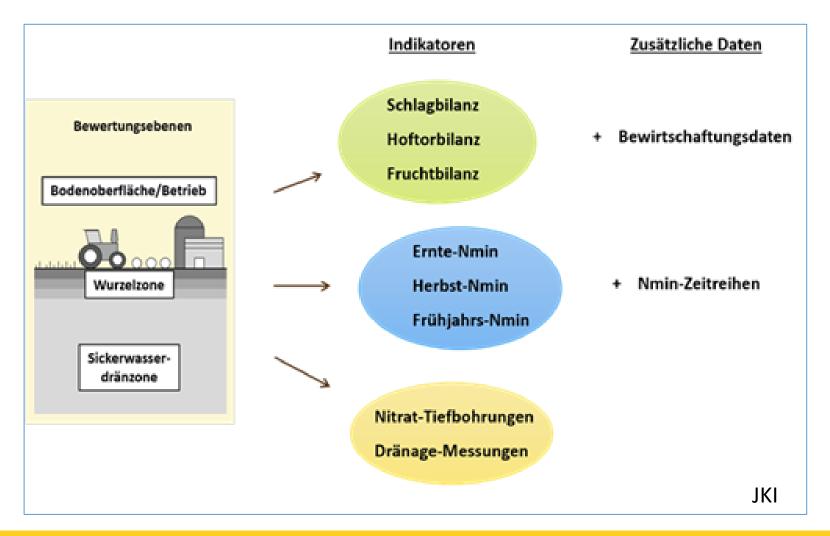
Nadine Tauchnitz

Victoria Maaß
Frank Reinicke
Michael Steininger
Franz Schild von Spannenberg
Eyk Hasselwander
Matthias Schrödter


Hintergrund und Zielstellungen

- Aufbau bundesweites Wirkungsmonitoring der Düngeverordnung (DüV), Modellregionen = Bestandteil des Wirkungsmonitorings (Projekt MoNi2, JKI, 12 Modellregionen)
- Einrichtung von Modellregionen in Sachsen-Anhalt:
- ✓ Wirkungszusammenhänge zwischen der landwirtschaftlichen Bewirtschaftung und der Nitrataustragsgefährdung
- ✓ Bewertung der Wirkung von Maßnahmen für eine Verbesserung der Grundwasserqualität
- ✓ Einbeziehung des N-Nachlieferungsvermögens der Böden sowie des Nitratabbaupotentials unterhalb des Wurzelraumes
- ✓ Berücksichtigung der Trockengebietsbedingungen im Wirkungsmonitoring der DüV

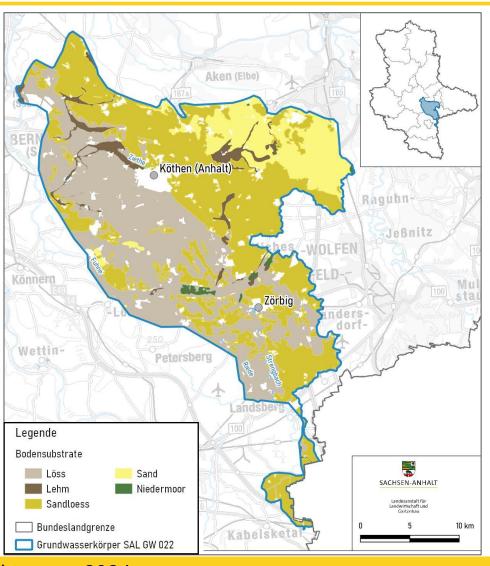
Modellregionen in Sachsen-Anhalt



- ✓ Modellregion Querfurter Platte (GWK SAL GW 014)
- Kleineinzugsgebiet Bad Lauchstädt

Modellregion Köthener Ackerland (GWK SAL GW 022)


Messprogramm im bundesweiten Wirkungsmonitoring


- Laufzeit: ab Oktober 2021
- Kooperationspartner:
- 12 Testbetriebe (12 Schläge/Betrieb)
 3 Ökobetriebe, 9 konventionelle Betriebe
- Privates Institut f
 ür Nachhaltige Landbewirtschaftung GmbH (INL)
- Mitteldeutsches Institut für angewandte Standortkunde und Bodenschutz (MISB)
- Gesellschaft für Umweltsanierungstechnologien mbH (G.U.T.)
- Landwirtschaftlicher Beratungsring Roßlau e.V.
- Maschinenring Dienstleistungs GmbH Sachsen-Anhalt
 Süd

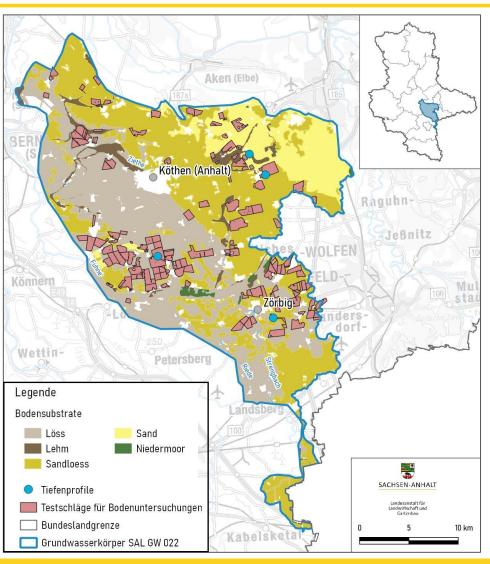
Untersuchungsgebiet

GWK SAL GW 022

Größe: 68.861 ha

davon: 54.604 ha LN

52.213 ha AL


2.390 ha GL

- differenzierte Bodenverhältnisse
- Hauptbodensubstrate:Löss, Sandlöss, Sand, Lehm
- geringe Niederschläge langjährig¹: 537 mm/Jahr
- langjährig¹ mittlere Temperatur: 10,1°C
- negative klimatische Wasserbilanz langjährig¹: -129 mm/Jahr Vegetationsperiode¹: -238 mm

¹: 1991-2020

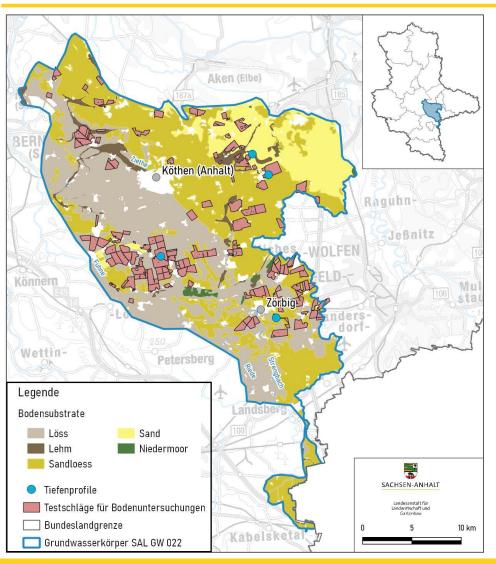
Untersuchungsprogramm

Bodenuntersuchungen

144 Testschläge:

- N_{min}-Gehalte (Frühjahr, Nachernte, Herbst)
- Humusgehalte und leicht umsetzbare organische Bodensubstanz

8 Intensiv-N_{min}-Flächen


N-Mineralisation, N-Auswaschung

4 Tiefenprofile

- Nitratverlagerung
- Nitratabbau (NO₃-N/CI-Verhältnis)
- Nitratkonzentrationen im Sickerwasser
- Verweilzeiten Sickerwasser

Untersuchungsprogramm

Bewirtschaftung

<u>(rückwirkend ab 2018)</u>

- Fruchtarten, Düngung, Fruchtfolge, Bodenbearbeitung, etc.
- N-Bilanzen (schlagbezogen, betriebsbezogen, fruchtartenspezifisch, Stoffstrombilanzen)
- N- und Humusbilanzen (REPRO)
- statistische Auswertungen (Einfluss Bewirtschaftung auf Nitratverlagerung-Korrelationen, Clusteranalyse, Regressionen, etc.)

Methodik Tiefenprofiluntersuchungen: Ermittlung des Nitratabbaus

- mit Hilfe der Bilanzierung von NO₃⁻ und Cl⁻-Gehalten in ihrer Tiefenverteilung an wiederholt beprobten Ackerstandorten nach Funk et al. (1996)
- Verlagerung von NO₃⁻ und Cl⁻ im Boden erfolgt nach gleichartigen Gesetzmäßigkeiten:
 beide Stoffe unterliegen der hydrodynamischen Dispersion aber im Unterschied zu NO₃⁻ wird Cl⁻ nicht mikrobiell abgebaut
- anhand der Abnahme des NO₃-Gehaltes gegenüber dem Cl-Gehalt kann der Umfang des NO₃-Abbaus zwischen zwei Probenahmeterminen ermittelt werden
- bei einem NO₃-Abbau nimmt das NO₃-N:CI-Verhältnis ab
- bisher zwei Probenahmekampagnen
 (Herbst 2022/Frühjahr 2023, Herbst 2023/Frühjahr 2024)

Witterungsbedingungen im Untersuchungszeitraum 2021 bis 2024

Klimatische Wasserbilanz (KWB)= Niederschlag – potentielle Evapotranspiration

Jahr	Niederschlag (N)	Differenz N zum	Klimatische Wasserbilanz (KWB)	Differenz KWB zum	Temperatur (T)	Differenz T zum	
	(mm)	Langj. Mittel (mm)	(mm)	Langj. Mittel (mm)	(°C)	Langj. Mittel (°C)	
2021	588,3	51,3	-82,0	46,5	10,0	-0,1	
2022	408,1	-128,9	-410,0	-281,5	11,3	1,1	
2023	605,4	68,4	-109,9	18,6	11,5	1,4	
2024 ⁽¹⁾	532,7	80,7	-166,4	23,0	13,4	2,0	

^{1:} Jan-Okt

	DWD Station Köthen Vegetationsperiode (April bis September)											
Jahr	Niederschlag (N)	Differenz N zum Langj. Mittel	Klimatische Wasserbilanz (KWB)	Differenz KWB zum Langj. Mittel	Temperatur (T)	Differenz T zum Langj. Mittel						
	(mm)	(mm)	(mm)	(mm)	(°C)	(°C)						
2021	376,2	64,6	-200,7	36,7	15,6	-0,3						
2022	194,7	-116,9	-532,9	-295,5	16,7	0,8						
2023	226,4	-85,2	-351,9	-114,5	16,6	0,7						
2024	359,4	47,8	-224,3	13,1	17,5	1,6						

N-Salden der Testschläge

N-Zufuhr, N-Entzug, N-Saldo und N-Nutzungseffizienz (NUE) der 144 Testschläge

Jahre	N-Zufuhr ¹	N-Entzug	N-Saldo	NUE
	kg N/ha	kg N/ha	kg N/ha	%
2018	158	91	67	58
2019	141	108	33	77
2020	155	126	29	81
2021	168	156	12	93
2022	86	129	-43	150
2023*	83	128	-45	155
Mittel 2018-2023	<u>132</u>	<u>123</u>	<u>9</u>	<u>93</u>

¹Zufuhr über Dünger und legume N-Fixierung (Richtwerte LLG)

^{*2023} nicht vollständig (9 Betriebe)

N-Salden der Testbetriebe nach REPRO

N-Bilanzglieder und N-Salden nach REPRO der 12 Testbetriebe (TB) im Mittel der Jahre 2018-2022

(kg N ha ⁻¹ a ⁻¹)	TB 1	TB 2	TB 3*	TB 4	TB 5*	TB 6	TB 7	TB 8	TB 9	TB 10	TB 11*	TB 12
2018-2022	konv	konv	konv	konv	konv	konv	öko	öko	öko	konv	konv	konv
N-Entzug (Gesamt)	124	124	118	102	130	152	102	105	106	115	130	130
Hauptprodukt	89	103	86	81	92	116	86	91	89	88	85	106
Nebenprodukt	35	21	32	21	38	36	16	14	16	27	45	24
N-Abfuhr (Ernteertrag)	84	93	84	78	93	103	79	78	82	87	85	99
N-Zufuhr	169	149	186	135	172	208	150	128	125	167	181	156
Immission	11	11	11	11	11	11	11	11	11	11	11	11
Saatgut	1	2	1	1	2	2	2	2	3	2	2	2
Symbiontische N-Fix.	1	6	0	1	0	3	37	28	34	5	0	3
Mineraldünger	84	61	106	59	100	132	4	4	3	69	113	71
Organischer Dünger	72	70	68	63	59	60	96	83	73	80	55	69
Strohdüngung	15	13	20	15	18	17	11	11	12	19	21	16
Gründüngung	26	18	13	9	19	31	12	17	11	9	24	16
Stallmist	0	17	5	0	6	0	36	12	10	5	0	0
Gülle, Jauche	26	20	26	15	14	4	20	31	21	44	7	29
Sonst. Org. Dünger	5	2	4	24	1	7	17	13	18	3	4	8
∆ N Bodenvorrat	-20	-12	-12	-20	-16	-10	7	-6	-12	-13	-20	-10
N-Saldo (brutto)	65	38	81	54	58	66	40	29	31	65	71	37

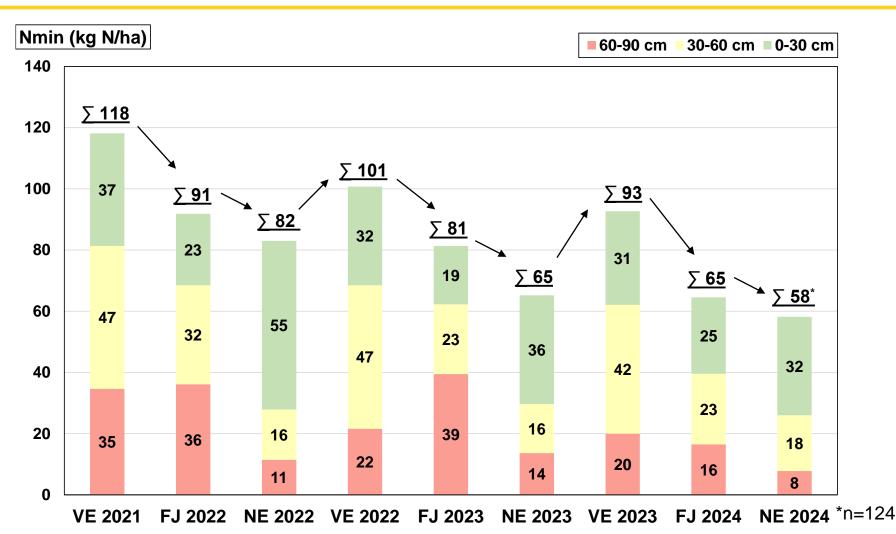
*Mittelwerte 2018-2021

Zielbereich zwischen 0 und 50 kg N/ha

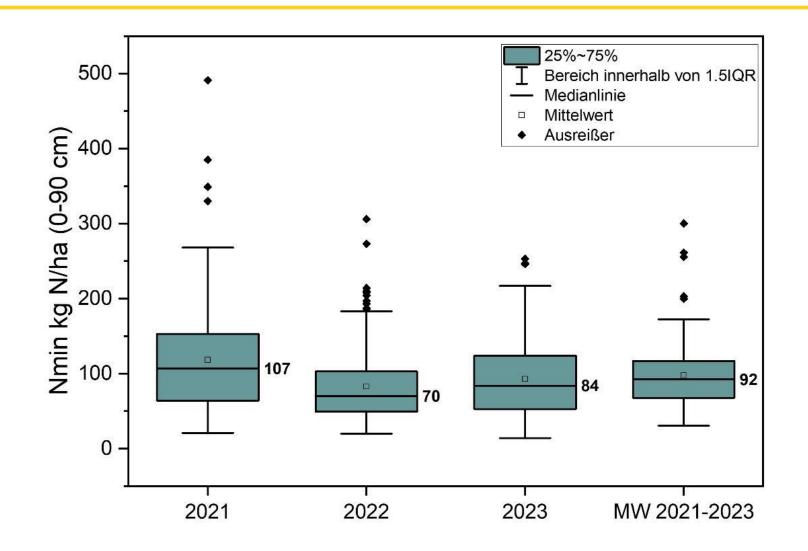
Humusbilanzen der Testbetriebe nach REPRO

Humusbilanzglieder 12 Testbetriebe nach REPRO im Mittel der Jahre 2018-2022

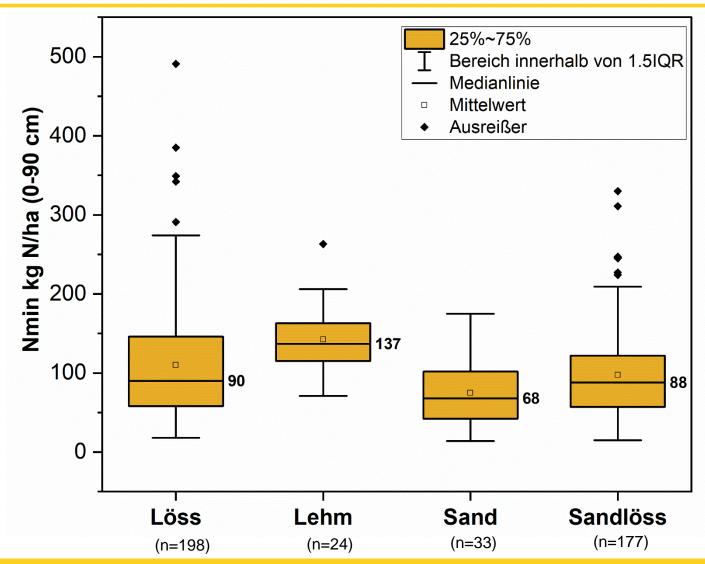
Ackerland					Т	estbetrie	be (TB)					
(kg Humus-C ha ⁻¹ a ⁻¹⁾	TB 1	TB 2	TB 3*	TB 4	TB 5*	TB 6	TB 7	TB 8	TB 9	TB 10	TB 11*	TB 12
2018-2022	konv	konv	konv	konv	konv	konv	öko	öko	öko	konv	konv	konv
Humusbedarf	-576	-541	-506	-575	-495	-483	-587	-581	-583	-533	-538	-496
Humusmehrerleistung	14	28	3	6	0	19	114	94	81	4	0	16
Zufuhr org. Dünger	340	374	372	352	326	362	551	406	377	393	327	366
Strohdüngung	197	174	244	190	212	237	163	158	156	219	240	217
Gründüngung	59	38	26	20	44	65	29	44	29	20	47	36
Stallmist	0	98	24	0	31	0	241	88	73	28	2	1
Gülle	40	46	51	17	37	12	48	82	63	106	11	55
Sonstige org. Dünger	44	17	26	126	3	48	69	34	56	20	27	58
Humusersatzleistung	353	402	375	358	326	381	665	500	458	397	327	382
Humussaldo	-222	-139	-131	-217	-169	-102	77	-81	-125	-136	-212	-115


^{*}Mittelwerte 2018-2021

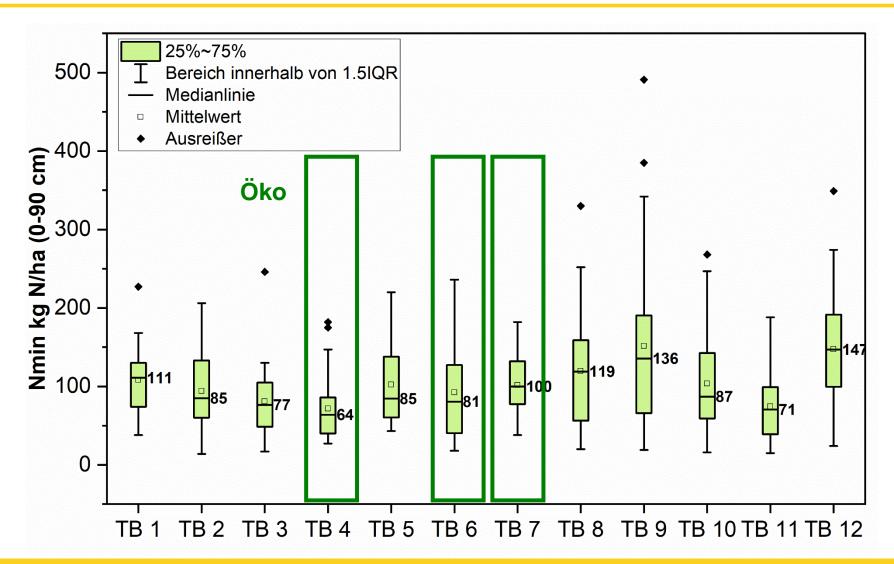
Zielbereich zwischen -75 kg C/ ha und 100 kg C/ha


Nmin-Dynamik 2021 bis 2024

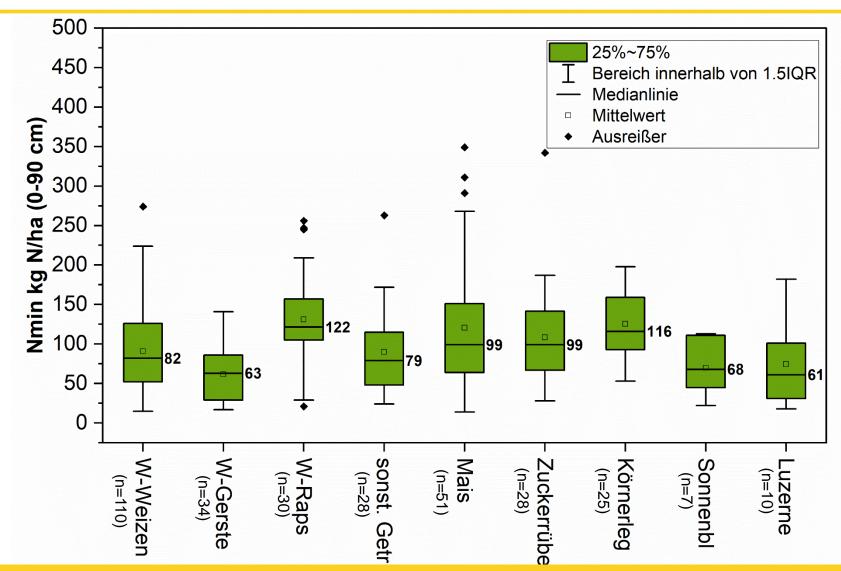
Mittlere Nmin-Gehalte aller Testflächen zu den Probenahmeterminen FJ (Frühjahr), Nachernte (NE) und Vegetationsende (VE)



Herbst(VE)-Nmin - Vergleich der Jahre



Herbst(VE)-Nmin (2021-2023) - Vergleich der Bodensubstrate

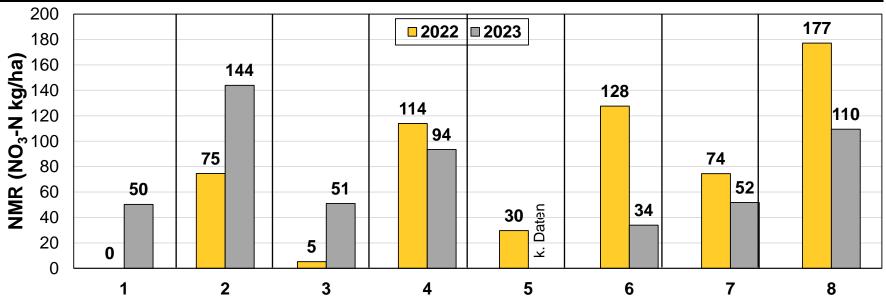


Herbst(VE)-Nmin (2021-2023) - Vergleich der Testbetriebe (TB)

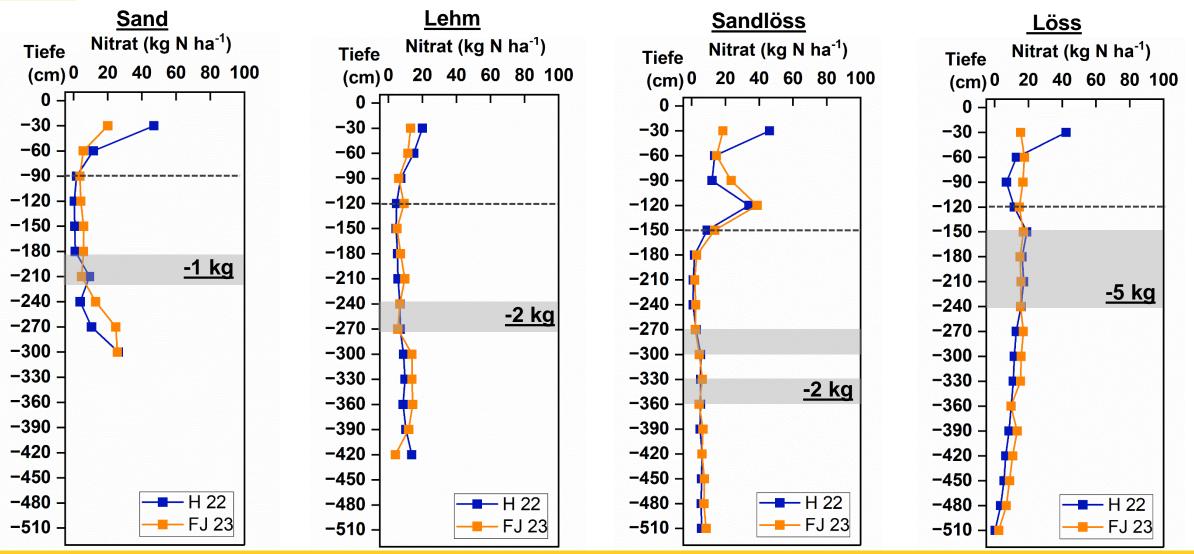
Herbst(VE)-Nmin (2021-2023) - Vergleich der Fruchtarten

Änderung der Nmin-Gehalte zwischen Nachernte (NE) und Vegetationsende (VE)

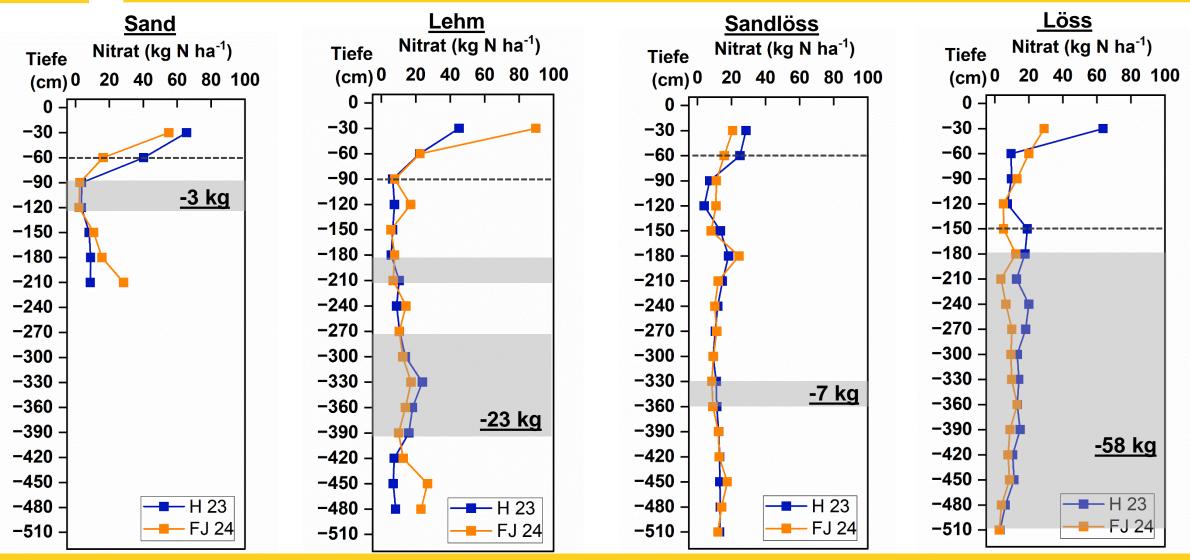
	Mittlere Änderung der Nmin-Gehalt 0-90 cm Tiefe (kg N/ha)						
	2022	2023					
alle Testschläge	+18	+27					
Testschläge mit VF Mais	+18	+22					
Testschläge mit VF W-Raps	+46	+72					
Testschläge mit VF W-Gerste	+10	+14					
Testschläge mit VF W-Weizen	+2	+24					
Testschläge mit VF sonst. Getr.	+19	+10					
Testschläge mit VF Zuckerrübe	+18	+10					
Testschläge mit VF Körnerleg.	+49	+60					


VF: Vorfrucht, W: Winter, sonst. Getr.: sonstiges Getreide, Körnerleg.: Körnerleguminosen

Netto-Mineralisation (NMR) nach der Ernte (NE)


N-Nachlieferung im Zeitraum NE bis Vegetationsende

Intensivmessfläche	1	2	3	4	5	6	7	8
Bodensubstrat	Sand	Lehm	Sandlöss	Löss	Löss	Löss	Löss	Löss
C _{org} (%)	1,0	0,9	1,3	1,7	1,5	1,5	1,7	3,0
C/N	11,0	11,0	11,0	11,0	12,0	10,5	10,7	9,5
C _{hwl} (mg/100 g)	40,8	41,2	45,5	55,8	57,4	50,0	50,1	109,1
Fruchtart 2022	Mais	W-Gerste	W-Raps	W-Weizen	W-Gerste	V-Weizen (Lup	Körnermais	W-Weizen
Fruchtart 2023	W-Weizen	Silomais	W-Weizen	W-Gerste	W-Weizen	Kartoffeln	S-Gerste	Silomais
Org. Düng. 2022	fl. Gärreste	Rindergülle	keine	keine	keine	Gärreste	keine	Klärschlamm-KP
Org. Düng. 2023	Gärreste	Gärreste	keine	Kompost	k. Daten	keine	keine	Klärschlamm-KP
BB 2022	keine	1x	1 x	3 x	3 x	2 x	1x	2x
BB 2023	keine	keine	1x	3 x	k. Daten	2 x	2 x	2x



Tiefenprofiluntersuchungen - Kampagne 2022/2023

Tiefenprofiluntersuchungen - Kampagne 2023/2024

Zusammenfassung

- einfache schlagbezogene N-Salden langjährig (2018-2023) auf geringem Niveau, abnehmender Trend der N-Zufuhr → negative N-Salden, sehr hohe N-Nutzungseffizienz
- REPRO-N-Bilanzen deutlich h\u00f6heres Niveau, Freisetzung N aus Mineralisation
- Humusbilanzen in den meisten Testbetrieben zu niedrig
- hohes Niveau der N_{min}-Gehalte zum Vegetationsende, leicht abnehmender Trend seit 2021: Einfluss Bodeneigenschaften (C_{org}, C_{hwl}) und Vorfrucht, kaum Unterschiede zwischen Bewirtschaftungsform (öko, konv)
- Nachweis hoher Mineralisationsraten nach der Ernte bis zum Vegetationsende
- Tiefenprofiluntersuchungen: geringe Nitratverlagerung aus der durchwurzelten Bodenzone, zum Teil hohe Nitratabbauraten in der Dränzone bei günstigen Denitrifikationsbedingungen (hohe Bodenwassergehalte, Verfügbarkeit mikrobiell umsetzbarer Kohlenstoff)

Ausblick

Fortsetzung der Untersuchungen

- ✓ Fortsetzung Monitoring
- ✓ Anlage Zwischenfruchtversuch nach Ernte 2024 auf einem Testschlag
- ✓ Erweiterung Zwischenfruchtversuche auf anderen Standorten ?
- laufende Auswertungen Bodenuntersuchungen, Zwischenfruchtversuch und Bewirtschaftungsdaten
- ✓ statistische Auswertungen (Haupteinflussfaktoren Nitratverlagerung), Veröffentlichungen
- ✓ Ableitung Bewirtschaftungsstrategien und Beratung der Testbetriebe

Ausblick

Zwischenfruchtversuch

Anlage Zwischenfruchtversuch nach Ernte 2024

- Bodensubstrat Löss, Vorfrucht Winterweizen
- Einfluss Zwischenfrucht (ZWF)-Anbau auf N_{min}-Dynamik (Nachernte bis Vegetationsbeginn) und Wasserverfügbarkeit der Folgefrucht
- Einfluss Mulchauflage auf Infiltrationsfähigkeit und Mineralisationsgeschehen des Bodens
- Versuchsvarianten:

1) ohne ZWF, mit Mulch

2) mit ZWF, mit Mulch

3) mit ZWF, ohne Mulch 4) ohne ZWF, ohne Mulch

22.10.2024

