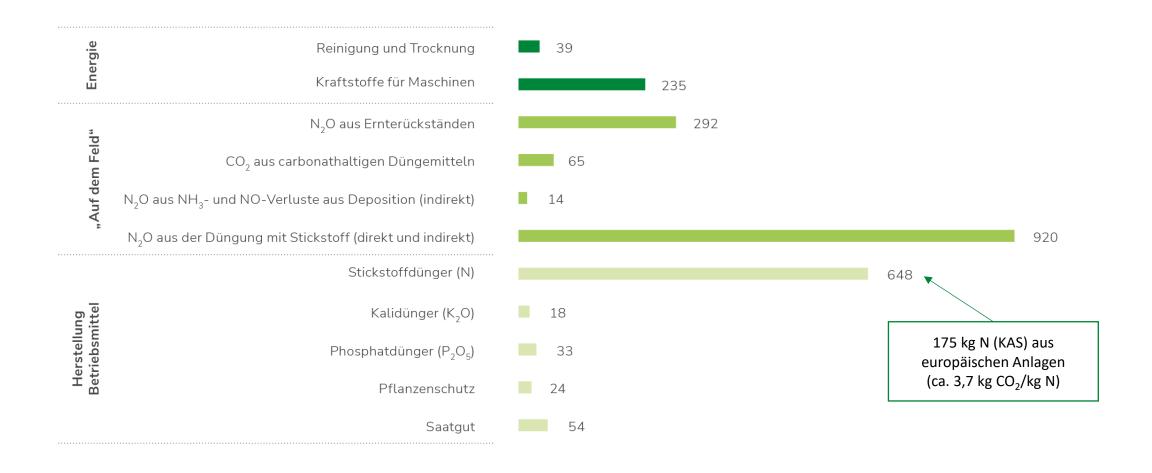


Mammutaufgabe Treibhausgasminderung

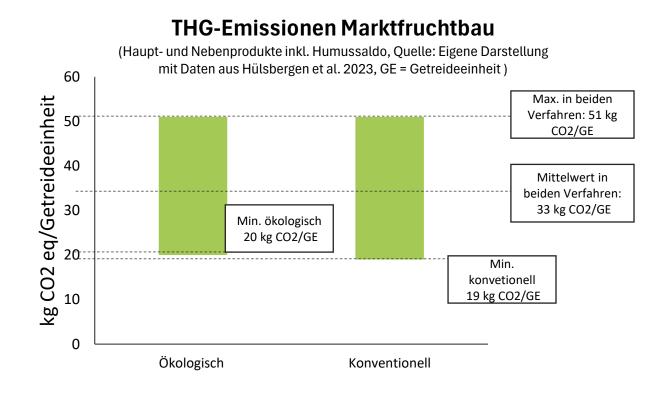
- Ambitionierte Klimaziele
- Produktionsverfahren
 - Precision Farming
 - Stickstoff-Inhibitoren
- "Große" politische Themen
 - Umbau der Energie Versorgung
 - Regulierung von NGT



 ETS (Europäisches Emission-Trading System) & CBAM (Carbon-Boarder-Adjustment-Mechanism)

IVA-Diskussionspapier

(Quelle: Eigene Berechnung und Darstellung mittels LfL-Klimarechner)



IVA Position

<u>Diskussionspapier</u>: Technische Minderungspotenziale für THG-Emissionen im Ackerbau (41 Seiten)

- Inhibitoren, Precision Farming, NGT & grüne & blaue Düngemittel haben großes Potenzial für kostengünstige THG-Minderung
- Bio-Landbau ist nicht die Lösung
- PSM- und PE-Restriktionen bedrohen Produktion
 & erzeugen Landnutzungsänderungen

Klima-Studie von Sponagel et al. 2025

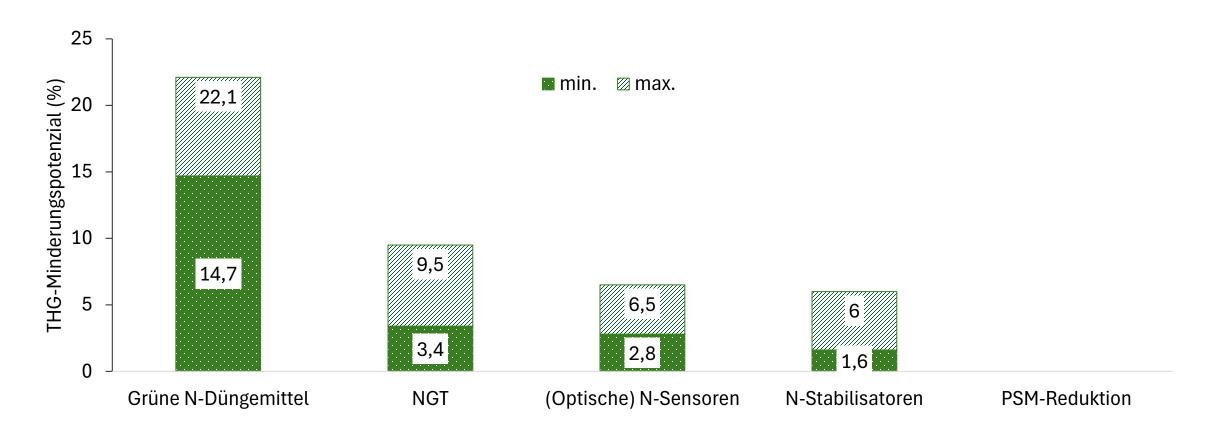
THG-Minderungspotenziale durch Innovationen: Forschungskonsortium aus Uni Hohenheim und Hochschule Geisenheim unter Federführung von Prof. Enno Bahrs

- <u>Langfassung</u> mit 96 Seiten und <u>Kurzfassung</u> sowie <u>peer-review Veröffentlichung</u>
- Modellierung der THG-Effekte

DM-Applikation (Optischer Sensor)

N-Inhibitoren

NGT


Grüne Dünger

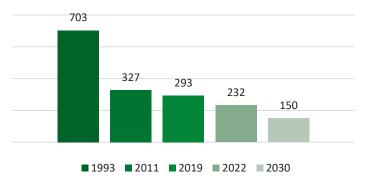
Wo liegen die größten Potenziale zur THG-Einsparung?

THG-Minderungspotenziale im konventionellen Ackerbau

(Quelle: Eigene Darstellung mit Daten aus Sponagel et al. 2024)

→ THG-Minderung um bis zu 40 %

Mini-Exkurs: Wirkstoffverfügbarkeit



Pflanzenschutz: EU-Zulassungsverfahren praxistauglich machen

- Der zunehmende Verlust bei Pflanzenschutzmittel-Wirkstoffen bedroht die Produktivität
 - → Verschlechterung der Klimabilanz
 - → Drohende Landnutzungsänderung

- Zurück zu risikobasierter Wirkstoff-Bewertung
 - → Anpassung der EU-Verordnung 1107/2009

Chemical active ingredients EU (22.2.2022*)

Biologische Wirkstoffe EU

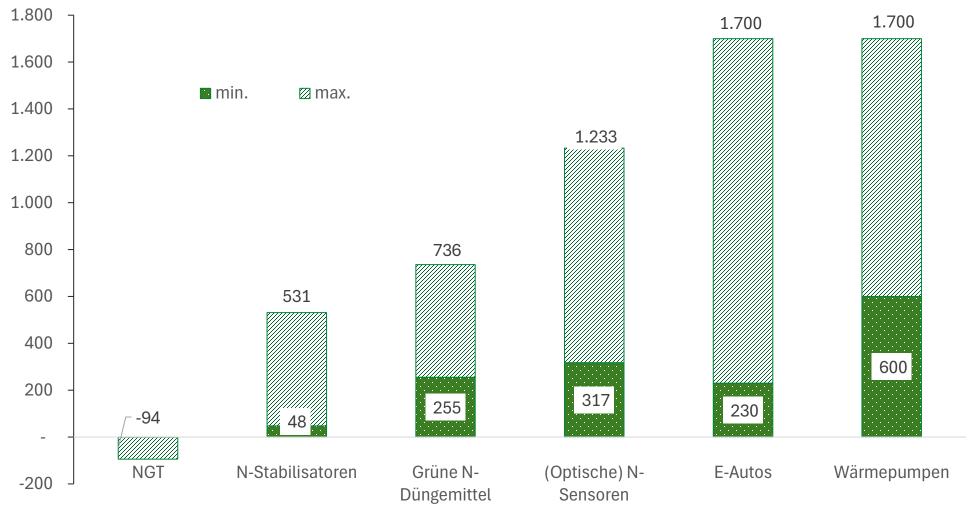
Welche Maßnahme hat die geringsten THG-Vermeidungskosten?

N-Inhibitoren

NGT

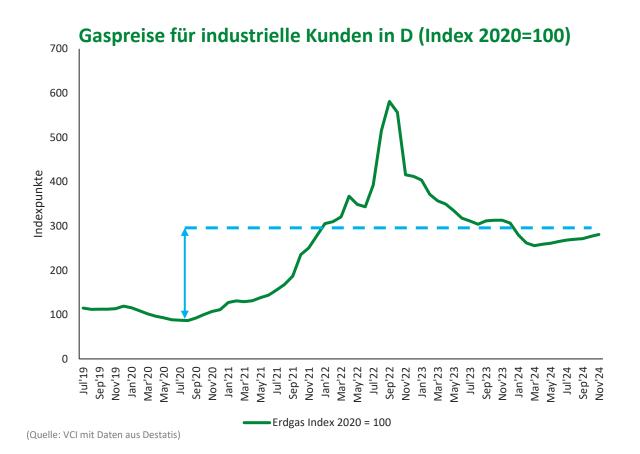
Grüne Dünger

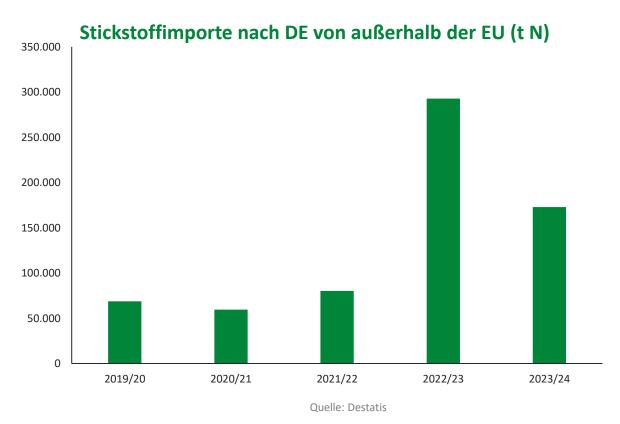
Energetische Gebäudesanierung



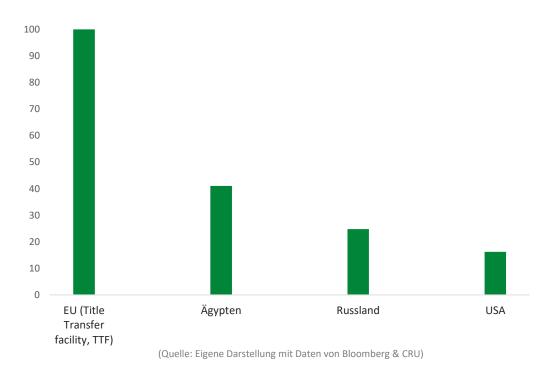
E-Autos

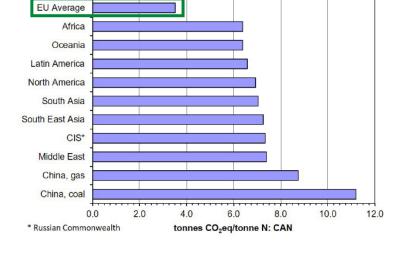
THG-Vermeidungskosten (€/t)



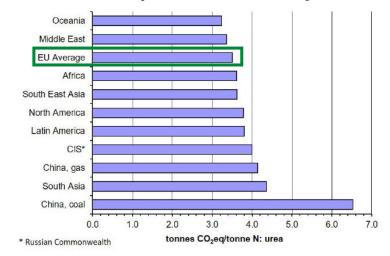

(Quelle: Eigene Darstellung mit Daten aus Sponagel et al 2024, Weimann 2021 für Wärmepumpen sowie Zapf et al. 2021 und Obermüller 2019 für E-Autos)

Herausforderungen bei Düngemittel





Preise und Emissionen im Internationalen Vergleich

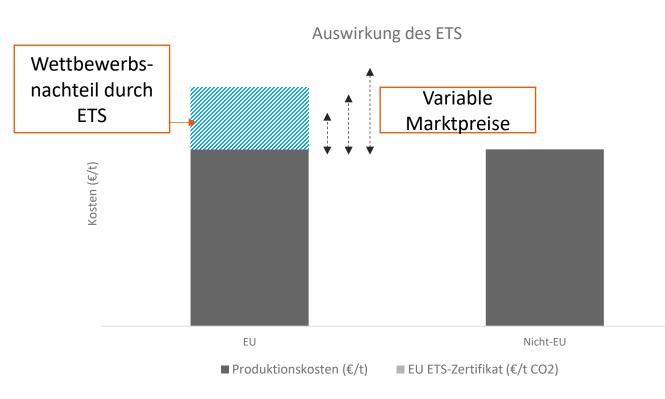


Industriegaspreise 2024 (rel. zu EU in %)

Figure 3: Variations in the carbon footprint of calcium ammonium nitrate (CAN) (27-0-0) fertiliser products between selected regions of the world.

Figure 4: Variations in the carbon footprint of urea (46-0-0) fertiliser products between selected regions of the world.

Einleitung: EU-ETS als Grund für CBAM


EU ETS (Emission-Trading-System)

Handelbare Zertifikate für THG-Emissionen als Anreiz zur Reduktion der THG-Emissionen innerhalb der EU.

- Ziel: THG-Neutralität bis 2050
- ETS-Zertifikate werden (kostenlos) an Unternehmen zugeteilt
- "Fehlende" Zertifikate müssen zugekauft werden
- Seit 2013 wird die Menge kontinuierlich gesenkt
- → Anreiz für CO2-Einsparung (durch Innovation)

Theoretische Wirkung des EU-ETS

Effekt der Kappung (kostenloser) CO2-Zertifiakte

Es müssen mehr Zertifikate gekauft werden

oder

(Kostspielige) Investitionen zur CO2-Minderung getätigt werden.

Alternative: Reduktion der Produktionsmenge

- → Importe aus dem Nicht-EU-Ausland
- → Keine Exporte aus der EU

Theoretische Lösung: CBAM

Ziele des Carbon Border Adjustment Mechanism (CBAM)

CO₂ Bepreisung auf Produkte aus Nicht-EU Staaten

Vermeidung Wettbewerbsverzerrung, Auslagerung Industrie und CO₂-Emissionen

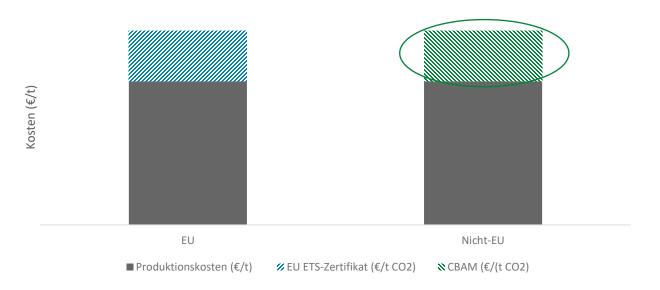
Dekarbonisierung der Produktion von Nicht-EU Staaten

Vom CBAM erfasste Produkte

Produkt- gruppe	Zement	Strom	Dünge- mittel	Eisen und Stahl	Alumini- um	Wasser- stoff
Emissionen	Direkte und indirekte Emissionen	Direkte und indirekte Emissionen	Direkte und indirekte Emissionen	Direkte Emissionen (Ausnahme: Agglomerierte Eisenerze)	Direkte Emissionen	Direkte Emissionen
Treibhaus- gase	CO ₂	CO ₂	CO ₂ und N ₂ O (Ausnahme Ammoniak; nur CO ₂)	CO ₂	CO ₂ und PFC	CO ₂

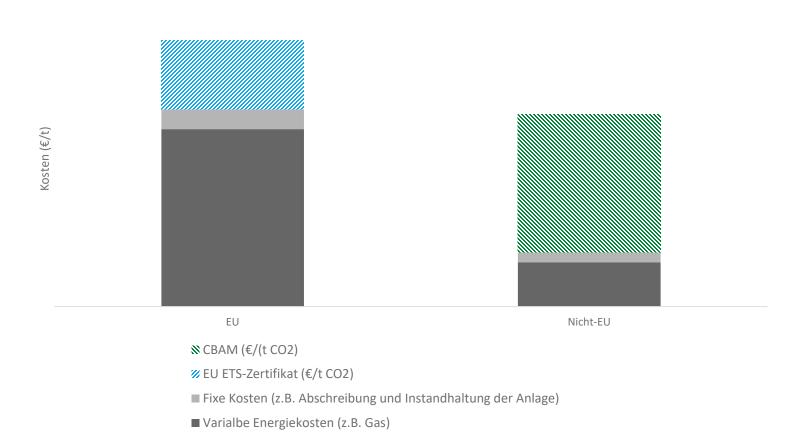
Implementierung des CBAM

- **■** Übergangszeitraum von Oktober 2023 bis Ende 2025
 - graue Emissionen melden, ohne Zertifikathandel, Sanktionen bei unterlassenen Meldungen
- Schrittweise Einführung von Januar 2026 bis Ende 2033
 - Schrittweise Verschärfung der CBAM-Verpflichtung und kostenlose Zuteilung von EU-ETS-Zertifikaten wird schrittweise reduziert
- Vollständig implementiert ab Januar 2034
 - für 100 Prozent der CBAM-relevanten Waren sind Zertifikate erforderlich; keine kostenlose Zuteilung im EU-ETS


Schematischer Effekt durch CBAM (naiv)

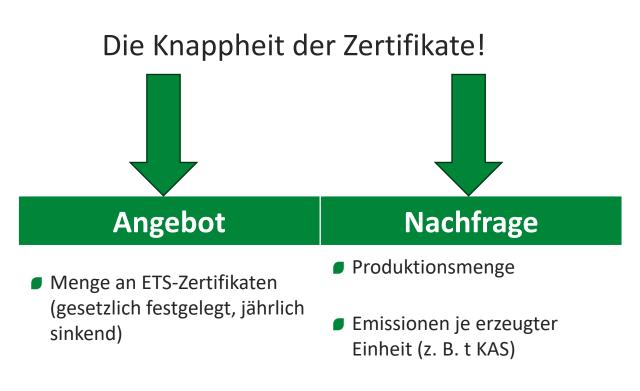
CO₂-Grenzausgleichsystem (carbon border adjustment mechanism CBAM; Verordnung (EU) 2023/956)

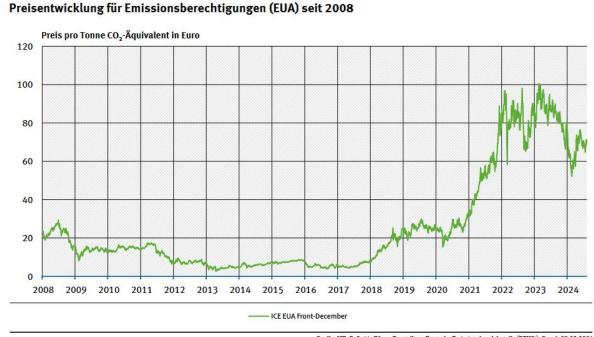
CO₂-Preis soll sich an ETS-Preis orientieren (wöchentliche Preisanpassung an ETS-Preis)


Aber:

- Gas in DE und EU viel teuer
 - → Produktion wesentlich teurer
- THG-Emissionen sind nicht gleich
 - → CBAM und ETS-Kosten unterschiedlich

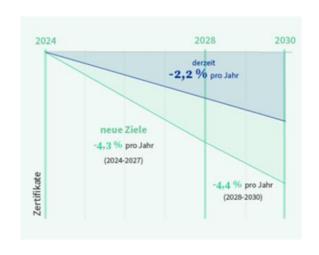
Schematischer Effekt durch CBAM





EU-ETS: Preissprung 2018 und 2020; Tendenz: steigend

Was bestimmt den ETS-Preis (CBAM-Preis)?



Kappung der kostenlosen Zertifikate

CBAM

Jahr	Kürzung der Zuteilung		
2026	2,5 Prozent		
2027	5 Prozent		
2028	10 Prozent		
2029	22,5 Prozent		
2030	48,5 Prozent		
2031	61 Prozent		
2032	73,5 Prozent		
2033	86 Prozent		
2034	100 Prozent		

Emissionen müssten im gleichen Maß gesenkt werden, damit keine Zertifikate erworben werden müssten

Wenn keine CO2-Einsparung erreicht wird, drohen im Jahr 2034 folgende Zusatzkosten:

	EU	Nicht-EU	
t CO ₂ / t KAS	1	2	
Zertifikatpreis (€/t CO2)	€/t KAS (Berechnung: Emission (t CO2/ KAS) * Zertifikat Preis (€/t CO ₂)		
50	50	100	
100	100	200	
200	200	400	

Aktueller KAS-Preis: ?

Zusammenfassung: ETS & CBAM (I)

- ETS: Verteuerung der inländischen Produktion (Dünger und damit auch LW-Rohstoffe)
 - Investition in THG-Minderung oder Kauf von Zertifikaten
- Technische THG-Reduktionspotenziale bei modernen Anlagen weitgehend ausgeschöpft
- Größter Hebel: Energie- bzw. Rohstoffquelle → Grüner bzw. blauer Wasserstoff und Biomethan
 - Industriepolitische Aufgabe: Netzausbau und günstige erneuerbare Energien
- CBAM: Ausgleich der Wettbewerbsnachteile (aus ETS) der Industrie (auf inländischen Märkten)
- Aber: CBAM ist eine Einbahnstraße
 - Keine Erstattung bei Exporten in Länder mit niedrigeren CO2-Preisen

Zusammenfassung: ETS & CBAM (II)

- Steigende Kosten für Düngemittel
- In der Tendenz sinkende Düngemengen und Wettbewerbsnachteile für Landwirtschaft und Betriebsmittelhersteller
- Wettbewerbsnachteile für dt. Landwirtschaft und steigende inländische Nahrungsmittelpreise
- Nicht erfasste Waren (z. B. Agrarrohstoffe) können die landwirtschaftliche Produktion verlagern
- Importe von Weizen anstelle von Dünger
 - → THG-Bilanz der inländischen Produktion verbessert (Nationales THG-Inventar)
 - → THG-Bilanz des inländischen Konsums verschlechtert ;(

Kurz und knapp

- DM-Herstellung = ¼ der Gesamtemissionen im konventionellen Weizenanbau (ohne org.
 Düngemittel)
- Drohende Verlagerung der Produktion wegen hoher Energiekosten und Abgaben
- ETS und CBAM führen zu erheblichen Zusatzkosten → Wettbewerbsnachteile für LW
- Kostengünstigere THG-Minderungspotenziale "auf dem Feld"
- Politischer Handlungsbedarf auf allen Ebenen:

 - Industriepolitik
 Steuern, Abgaben, Infrastruktur, Energieversorgung
 - Regulatorik → Pflanzenschutzmittel und NGT