
## INFORMATIONEN ZUR DÜNGUNG

Ausgabe Nordrhein-Westfalen 7. überarbeitete Auflage



Landesarbeitskreis Düngung



#### Mitglieder des LAD Nordrhein-Westfalen

#### Stand Februar 2009

Alzchem Trostberg GmbH

Dr. Gerhard Heß

Im Sellerts 10

64395 Brensbach

Tel.: 06161 / 8419 Fax.: 06161 / 8425

Funktel.: 0170 / 4570258

e-mail: gerhard.hess@alzchem.com

Internet: www.kalkstickstoff.de

Fertiva GmbH

Jürgen Berwinkel

Im Dicke 59b 33334 Gütersloh Tel· 05241 / 9619661 Fax.: 05241 / 9619662

Funktel.: 0176 / 12349245

juergen.berwinkel@fertiva.com e-mail: Internet: www.fertiva.de

K + S KALI GmbH Reinhard Elfrich

Bonhoefferstraße 18 48351 Everswinkel

Tel.: 02582 / 9363 02582 / 9364 Fax ·

Funktel.: 0176 / 12348347 e-mail:

reinhard.elfrich@kali-gmbh.com Internet: www.kali-gmbh.com

Rheinkalk KDI GmbH & Co. KG

Dr. Martin Sauermann

Rosenweg 1

51789 Lindlar-Hartegasse

Tel.: 02266 / 2750 02266 / 7288 Fax.:

Funktel.: 0171 / 9937429

martin.sauermann@rheinkalk.de e-mail:

Internet: www.rheinkalk-kdi.de

SKW Stickstoffwerke Piesteritz GmbH

Ludger Willeke

Dorfstraße 7 59192 Bergkamen Tel.: 02389 / 781690 Fax.: 02389 / 781691 Funktel.: 0151 - 19568108

ludger.willeke@skwp.de e-mail: Internet: skwp.de

YARA GmbH & Co. KG

Dr. Ulrich Ortseifen

Hanninghof 35 48249 Dülmen

02594 / 798123 Tel.: Fax · 02594 / 798455 Funktel.: 0170 / 9216043

e-mail: ulrich.ortseifen@yara.com

Internet: www.yara.de

## Inhaltsverzeichnis

| Αb | kürzun       | gen und Umrechnungsfaktoren                                | Seite |  |  |  |  |  |  |  |  |
|----|--------------|------------------------------------------------------------|-------|--|--|--|--|--|--|--|--|
| 1. | . Einleitung |                                                            |       |  |  |  |  |  |  |  |  |
| 2. | Begriff      | fsbestimmungen                                             | 2     |  |  |  |  |  |  |  |  |
| 3. | Boden        | untersuchung                                               | 4     |  |  |  |  |  |  |  |  |
| 4. | Abhan        | dlung der einzelnen Nährstoffe                             | 9     |  |  |  |  |  |  |  |  |
|    | 4.1          | Stickstoff (N)                                             | 9     |  |  |  |  |  |  |  |  |
|    | 4.1.1        | Ermittlung der N-Nachlieferung des Bodens                  | 9     |  |  |  |  |  |  |  |  |
|    | 4.1.2        | Ermittlung des N-Bedarfs im Grünland                       | 14    |  |  |  |  |  |  |  |  |
|    | 4.1.3        | Düngebedarfsermittlung bei Dauerkulturen                   |       |  |  |  |  |  |  |  |  |
|    |              | (Obst, Reben, Beerenobst)                                  | 14    |  |  |  |  |  |  |  |  |
|    | 4.1.4        | Wirkung des Stickstoffs in organischen Düngern             | 15    |  |  |  |  |  |  |  |  |
|    | 4.1.5        | Wirkungsweise mineralischer N-Formen                       | 16    |  |  |  |  |  |  |  |  |
|    | 4.1.6        | Kalkstickstoff                                             | 17    |  |  |  |  |  |  |  |  |
|    | 4.2          | Phosphat (P <sub>2</sub> O <sub>5</sub> )                  | 18    |  |  |  |  |  |  |  |  |
|    | 4.2.1        | Phosphat im Boden                                          | 18    |  |  |  |  |  |  |  |  |
|    | 4.2.2        | Phosphat in der Pflanze                                    | 19    |  |  |  |  |  |  |  |  |
|    | 4.2.3        | Phosphaternährung und -düngung im Pflanzenbau              | 20    |  |  |  |  |  |  |  |  |
|    | 4.2.4        | Wirkung der Phosphatdüngung auf die Qualität verschiedener |       |  |  |  |  |  |  |  |  |
|    |              | Kulturen                                                   | 22    |  |  |  |  |  |  |  |  |
|    | 4.2.5        | Phosphatdüngemittel                                        | 23    |  |  |  |  |  |  |  |  |
|    | 4.2.6        | Phosphat in organischen Düngern                            | 24    |  |  |  |  |  |  |  |  |
|    | 4.3          | Kali (K₂O)                                                 | 25    |  |  |  |  |  |  |  |  |
|    | 4.3.1        | Kali in der Pflanze                                        | 25    |  |  |  |  |  |  |  |  |
|    | 4.3.2        | Kali im Boden                                              | 26    |  |  |  |  |  |  |  |  |
|    | 4.3.3        | Düngebedarf                                                | 27    |  |  |  |  |  |  |  |  |
|    | 4.3.4        | Düngeverfahren                                             | 28    |  |  |  |  |  |  |  |  |

|       |                                    | Seite |
|-------|------------------------------------|-------|
| 4.3.5 | Kaliformen                         | 29    |
| 4.4   | Kalk (CaO)                         | 30    |
| 4.4.1 | Düngebedarf                        | 31    |
| 4.4.2 | Düngungsempfehlungen               | 31    |
| 4.4.3 | pH-Wert und Nährstoffverfügbarkeit | 34    |
| 4.4.4 | Kalkformen und -wirkung            | 36    |
| 4.4.5 | Kalkausbringung                    | 37    |
| 4.5   | Magnesium (Mg)                     | 39    |
| 4.5.1 | Magnesium in Boden und Pflanze     | 39    |
| 4.5.2 | Magnesiumbedarf                    | 39    |
| 4.5.3 | Magnesiumformen                    | 41    |
| 4.5.4 | Empfehlungen zur Magnesiumdüngung  | 41    |
| 4.6   | Schwefel (S)                       | 43    |
| 4.6.1 | Schwefel im Boden                  | 43    |
| 4.6.2 | Schwefel in der Pflanze            | 44    |
| 4.6.3 | Schwefelformen                     | 46    |
| 4.6.4 | Schwefelbedarf                     | 47    |
| 4.7   | Natrium (Na)                       | 48    |
| 4.7.1 | Natrium im Pflanzenbau             | 48    |
| 4.7.2 | Natrium in der Tierernährung       | 48    |
| 4.8   | Spurennährstoffe                   | 49    |
| Düng  | everordnung (DüV)                  | 54    |
| Anha  | ng                                 | 57    |

Nachdruck nur nach schriftlicher Genehmigung durch den LAD Nordrhein-Westfalen. Kostenlose Bestellung der Broschüre bei allen LAD-Mitgliedern.

5.

6.

## Gebräuchliche Abkürzungen

AHL Ammoniumnitrat-Harnstoff-Lösung

ASS Ammonsulfatsalpeter

AZ Ackerzahl (Bodenpunk

AZ Ackerzahl (Bodenpunkt)
BU Bodenuntersuchung

CaO Calciumoxid (= Branntkalk)

CaCO<sub>3</sub> Calciumcarbonat (= kohlensauer Kalk)

CAL Calcium-Acetat-Lactat

CaCl<sub>2</sub> Calciumchlorid

m<sup>3</sup> Kubikmeter

dt/ha Dezitonnen pro Hektar
DüV Düngeverordnung

HST Harnstoff

KAS Kalkammonsalpeter
kg/ha Kilogramm pro Hektar
K bzw. K<sub>2</sub>O Kalium bzw. Kaliumoxid
LK Landwirtschaftskammer

LUFA Landw. Untersuchungs- u. Forschungsanstalt

Mg bzw. MgO Magnesium bzw. Magnesiumoxid

mg Milligramm

MJME Megajoule metabolisierte Energie

ml Milliliter

MND Mehrnährstoffdünger

N Stickstoff

MUNLV Ministerium für Umwelt, Naturschutz, Landwirtschaft

und Verbraucherschutz

Na Natrium

NH<sub>4</sub>-N Ammonium-Stickstoff

NO<sub>3</sub>-N Nitrat-Stickstoff

 $N_{\mbox{org}}$  organisch gebundener Stickstoff  $N_{\mbox{min}}$  mineralisch gebundener Stickstoff

P bzw. P<sub>2</sub>O<sub>5</sub> Phosphor bzw. Phosphat

S bzw. SO<sub>4</sub> Schwefel bzw. Sulfat

SSA Schwefelsaures Ammoniak (Ammoniumsulfat)

TKM Tausendkornmasse
TM Trockenmasse
TS Trockensubstanz

VDLUFA Verband Deutscher Landw. Untersuchungs- u.

Forschungsanstalten

## Umrechnungsfaktoren

| Calcium                      | Magnesium                                                    |
|------------------------------|--------------------------------------------------------------|
| Ca $x 1,40 = CaO$            | Mg $\times$ 1,66 = MgO                                       |
| $CaO \times 1,78 = CaCO_3$   | $MgO \times 2,09 = MgCO_3$                                   |
| $CaCO_3 \times 0.56 = CaO$   | $MgCO_3 \times 0.48 = MgO$                                   |
| CaO x 0,71 = Ca              | $MgO \times 0.60 = Mg$                                       |
|                              | $MgSO_4 \times 0,34 = MgO$<br>$MgO \times 1,391 = CaO *(NW)$ |
| Phosphor                     | Kalium                                                       |
| $P 	 x 2,29 = P_2O_5$        | $K 	 x 	 1,20 = K_2O$                                        |
| $P_{2}O_{5} \times 0.44 = P$ | -                                                            |
| 2 0                          | $K_2O \times 0.83 = K$                                       |
| Schwefel                     | $KCI 	 x 	 0,63 = K_2O$                                      |
| $S 	 x 	 3,00 = SO_4$        | $K_2SO_4 \times 0.54 = K_2O$                                 |
| $SO_4 \times 0.33 = S$       |                                                              |
| Natrium                      | Stickstoff                                                   |
| Na $x 2,54 = NaCl$           | $N 	 x 	 4,43 = NO_3$                                        |
| NaCl x 0,39 = Na             | $NO_3$ $x  0.23 = N$                                         |
|                              | $N 	 x 	 1,29 = NH_4$                                        |
|                              | $NH_4$ x 0,78 = N                                            |

<sup>\*</sup>NW = Neutralisationswert

#### 1. Einleitung

Richtig düngen erfordert im modernen Pflanzenbau Präzisionsarbeit. Es muss gewährleistet sein, dass die Pflanzen von der Saat bis zur Ernte die jeweils benötigten Nährstoffe in ausreichender Menge über Wurzel und Blatt aufnehmen können. Dabei müssen auch ökologische Aspekte berücksichtigt werden.

Der Gießener Agrikulturchemiker *Professor Konrad Mengel* hat das anschaulich definiert: "Für Hochleistungssorten gilt das *Prinzip des vollen Tisches."* Ihr enormes Potential kann der Praktiker in vollem Maße ausschöpfen, wenn er das Stickstoffangebot exakt steuert, den erforderlichen Vorrat an Grund- und Spurennährstoffen in der Bodenlösung bereitstellt und für eine optimale Kalkversorgung sorgt. Dabei lassen sich ökonomische und ökologische Gesichtspunkte durchaus in Einklang bringen.

Von zentraler Bedeutung ist in diesem Zusammenhang eine sachgerechte Düngeplanung, um sowohl optimale Erträge zu erzielen als auch Nährstoffverluste in die Umwelt, wie z.B. Nitrateinträge in das Grundwasser, zu vermeiden.

Der Landesarbeitskreis Nordrhein-Westfalen will mit dieser Broschüre allen mit Düngemitteln und Düngung befassten Personen kurz gefasst Auskunft zu wichtigen Fragen der Pflanzenernährung und Düngung geben. Im Tabellenanhang sind wesentliche Daten, die zur Erstellung einer Düngekalkulation benötigt werden, aufgeführt. Für weitergehende Fragen stehen die Mitglieder des LAD Nordrhein-Westfalen zur Verfügung. Die Anschriften können der Rückseite des Titelblattes entnommen werden.

Ihr LAD Nordrhein-Westfalen

## 2. Begriffsbestimmungen

Man unterscheidet folgende Begriffe:

Nährstoffbedarf ist die Nährstoffmenge, die zur Erzielung eines bestimmten Ertrages oder einer bestimmten Qualität notwendig ist. Nährstoffentzug entspricht einem Teil des Nährstoffbedarfs und ist die gesamte Menge an Nährstoffen, die im Ernteprodukt und in den Ernterückständen gefunden werden.

Nährstoffabfuhr ist die Nährstoffmenge, die über die Ernteprodukte das Feld verlässt. Ernterückstände sind darin nicht enthalten, wenn sie auf dem Feld verbleiben.

Düngebedarf ist die Nährstoffmenge, die ergänzend zu den verfügbaren Nährstoffen aus dem Bodenvorrat und den Ernterückständen gedüngt werden muss. Der Düngebedarf ist u.a. von Standortfaktoren, Witterung, Bewirtschaftungsintensität und genetischer Veranlagung der Sorte abhängig. Verluste durch Ausgasung, Auswaschung und Festlegung müssen berücksichtigt werden. Aus diesem Grund kann der Düngebedarf bei Stickstoff, Kalium und Magnesium mehr oder weniger deutlich über dem Entzug liegen. Bei Phosphat, Kali und Magnesium ist bei der Bestimmung des Düngebedarfs die Gehaltsklasse C anzustreben bzw. sicherzustellen.

**Nährstoffaufnahme** beschreibt den Vorgang der Nährstoffaneignung durch die Pflanzen und beinhaltet den zeitlichen Verlauf des Nährstoffbedarfs während der einzelnen Vegetationsabschnitte.

**Erhaltungsdüngung** umfasst die Nährstoffmenge, die erforderlich ist, um den Bodennährstoffgehalt in der Gehaltsklasse C zu erhalten. Sie entspricht bei Phosphat in der Regel dem Nettoentzug, bei Kali und Magnesium müssen darüber hinaus Auswaschungsverluste ausgeglichen werden.

**Erhaltungskalkung** ist die Kalkmenge, die regelmäßig ausgebracht werden muss, um Kalkverluste auszugleichen und damit den optimalen Kalkzustand des Bodens zu erhalten.

**Gesundungskalkung** ist die Kalkmenge, die <u>zusätzlich</u> zur Erhaltungskalkung ausgebracht werden muss, um einen Boden mit zu niedrigem pH-Wert in einen optimalen pH-Bereich aufzukalken.

**Fruchtfolgedüngung** umfasst die Nährstoffmenge, die – bei guter Nährstoffversorgung des Bodens – mindestens den Nettoentzug einer gesamten Fruchtfolge so abdeckt, dass die Bodenfruchtbarkeit nicht leidet. Diese Düngergabe erfolgt in der Regel zur Blattfrucht.

## 3. Bodenuntersuchung

Die Kenntnis des Nährstoffgehaltes im Boden ist erforderlich, um kostensparend zu düngen, den Pflanzen die für ihr Wachstum nötigen Nährstoffmengen anzubieten und Umweltbelastungen durch Überdüngung zu vermeiden. Die Bodenuntersuchung gibt Auskunft über die Nährstoffgehalte der Böden und liefert somit brauchbare Anhaltspunkte zur Düngebedarfsermittlung.

Die Anforderungen an die Bodenuntersuchung sind im Laufe der Jahre mit zunehmender Verbesserung der Nährstoffvorräte im Boden deutlich gestiegen. Bei der Bemessung von Düngergaben hinterfragt die landwirtschaftliche Praxis heute viel präziser, wo das Düngeoptimum mit dem maximalen Gewinn liegt, und welche Nährstoffgehalte für einen bestimmten Standort anzustreben sind (Versorgungsstufe C).

Häufig jedoch stehen die mit der Bodenuntersuchung festgestellten Nährstoffgehalte und die durch Düngung erzielten Mehrerträge nicht in enger Beziehung zueinander. Die Ursachen hierfür liegen meistens im Standort (Boden, Witterung) oder in pflanzenspezifischen Eigenheiten. Die Höhe der Nährstoffaufnahme durch die Pflanzen wird nämlich nicht nur von den vorhandenen Nährstoffen, sondern auch von deren Verfügbarkeit und dem Aneignungsvermögen der Pflanzen bestimmt. Die Nährstoffverfügbarkeit wiederum ist abhängig von zahlreichen Faktoren wie Wassergehalt, Bodenart, Bodenstruktur, Durchwurzelbarkeit, Humusgehalt, pH-Wert, Festlegung usw...

Trotzdem gibt es aber derzeit kein besseres Instrument zur Düngebedarfsermittlung als die Bodenuntersuchung. Sie ist unverzichtbarer Bestandteil der Düngeplanung und stellt eine wichtige Orientierungshilfe für den Praktiker dar. Auch
andere Methoden zur Düngebedarfsermittlung wie die Pflanzenanalyse und die
Nährstoffbilanzierung weisen ihre Schwächen auf. Reines Bilanzdenken, d.h. nur
der Vergleich von Nährstoffzufuhr und Nährstoffabfuhr, erlaubt keine korrekte
Ermittlung des Düngebedarfs, da wesentliche Umwelt- und Standortfaktoren
nicht berücksichtigt werden.

Außerdem sollte das letzte Milligramm hin oder her nicht entscheidend sein, vor allem im Grenzbereich der Versorgungsstufen (*Tabelle 1*). Viel zu selten nämlich ist die mit einer Bodenprobe erfasste Fläche völlig homogen, d. h. die Nährstoffgehalte können sogar innerhalb eines Schlages einer erheblichen Streuung unterliegen. Die vielfältige Abhängigkeit der über die Bodenuntersuchung ermittelten Nährstoffgehalte von spezifischen Standortfaktoren rechtfertigt ohne weiteres Zu- oder Abschläge, gegebenenfalls sogar über die in *Tabelle 1* genannten Düngungsziele in den einzelnen Gehaltsklassen hinaus.

Tabelle 1: Versorgungsbereiche der Bodennährstoffe und allgemeine Düngungsempfehlungen

| Gehaltsklasse             | Düngung               |
|---------------------------|-----------------------|
| A = sehr niedrig          | stark erhöhte Düngung |
| B = niedrig               | erhöhte Düngung       |
| C = anzustreben (optimal) | Erhaltungsdüngung     |
| D = hoch                  | verminderte Düngung   |
| E = sehr hoch             | keine Düngung         |

## Bodenuntersuchungs-Methoden

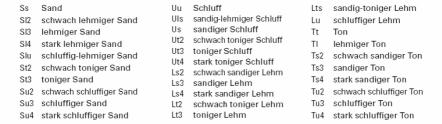
Die Bodenuntersuchung ist Basis für die Ermittlung des Düngebedarfs. Die wichtigsten langjährig erprobten Standardmethoden zur Bodenuntersuchung in Nordrhein-Westfalen sind in der folgenden *Tabelle 2* aufgeführt.

Tabelle 2: Untersuchungsmethoden zur Bestimmung des Gehaltes an pflanzenverfügbaren Nährstoffen und des pH-Wertes (nach Methodenbuch VDLUFA)

| Parameter | Untersuchungsmethode                        |  |  |  |  |
|-----------|---------------------------------------------|--|--|--|--|
| Phosphor  | CAL-Methode (Calcium-Acetat-Lactat)         |  |  |  |  |
| Kalium    | CAL-Methode                                 |  |  |  |  |
| Magnesium | CaCl <sub>2</sub> -Methode (Calciumchlorid) |  |  |  |  |
| pH-Wert   | CaCl <sub>2</sub> -Methode                  |  |  |  |  |
| Bor       |                                             |  |  |  |  |
| Kupfer    | CAT-Methode (Calciumchlorid + DTPA)         |  |  |  |  |
| Mangan    |                                             |  |  |  |  |
| Zink      | )                                           |  |  |  |  |

Fehlerquellen bei der Bodenuntersuchung sind oftmals eine unsachgemäße Probenahme und Probenaufbereitung bzw. -aufbewahrung.

Die Nährstoffgehalte für Mineralböden werden in mg/100 g lufttrockenem Feinboden (< 2 mm) angegeben. Lediglich auf Moorböden werden die Nährstoffe auf das Bodenvolumen bezogen (mg/100 ml), weshalb hier die ermittelten Nährstoffgehalte je nach Humusanteil/Raumgewicht zur richtigen Interpretation mindestens halbiert werden müssen.


Die Bewertung der Bodenuntersuchungsergebnisse von Mineralböden unterstellt ein Krumengewicht von 4,2 Millionen kg/ha (Raumgewicht 1,4 g/cm³, 30 cm Krumentiefe, Steinfreiheit). Flachgründige Böden oder Böden mit hohem Steinanteil sollten wegen des eingeschränkten Wurzelraumes bei gleicher Ertragserwartung etwa um 5-10 mg höhere Nährstoffgehalte aufweisen.

## Bodengruppen und Bodenarten

Als Grundlage für die Einordnung der Nährstoffgehalte in Gehaltsklassen und der pH-Werte in pH-Stufen dienen in Abhängigkeit vom Tonanteil (Bodenteilchen kleiner als 0,002 mm) die Bodenarten. Durch die Bodengruppen bzw. Bodenarten geht der Standorteinfluss in die Bewertung der pH-Werte und in die Einstufung der Nährstoffuntersuchungsergebnisse in die Gehaltsklassen ein. Die folgende *Abbildung 1* stellt die Einteilung der Bodengruppen und Bodenarten dar.

100 **Bodenarten nach LUFA** 90 Sand Uu lehmiger Sand 80 sandiger Schluff Ut4 stark sandiger Lehm 70 Tu4 lehmiger Schluff Schluff, Massenanteil in % Us sandiger Lehm 60 schluffiger Lehm Uts Lu Tu3 Lehm 3 50 schluffig-toniger Lehm Su4 Slu Ls2 **(5**) toniger Lehm 40 Lt2 Lt3 2 Tu2 Ton Ls3 Su<sub>3</sub> 30 4 SI3 SI4 Ls4 ΤI 20 Su2 5 1 Tt 10 St3 Ts4 Ts3 Ts2 Ss St2 0 40 10 l 20 30 60 70 80 90 17 12 Ton, Massenanteil in %

Abbildung 1: Einteilung der Bodengruppen und Bodenarten



Ist die Bodenart nach der "Bodenkundlichen Kartieranleitung" nicht bekannt, so kann mit Hilfe der *Tabelle 3* die entsprechende LUFA-Bodenartengruppe auch aus der Reichsbodenschätzung vorgenommen werden.

Tabelle 3: Einteilung in Bodenarten-Gruppen nach LUFA, Kartieranleitung 5 und Reichsbodenschätzung (n. Landwirtschaftskammer NRW)

|        | LUFA                                          | Einteilung nach |                                                    |                                |
|--------|-----------------------------------------------|-----------------|----------------------------------------------------|--------------------------------|
| Code   | Bezeichnung                                   | Kürzel          | Kartieranleitung<br>Bodenkunde<br>(Bodenkarte)     | Reichsbo-<br>den-<br>schätzung |
| 0<br>1 | Sand flachgründig<br>Sand                     | S               | S, Su2                                             | S                              |
| 2      |                                               |                 | St2, Sl2, Sl3, Su3, Su4,<br>Us, Uu                 | SI, IS                         |
| 3      | 3 stark sandiger Lehm<br>lehmiger Schluff     |                 | SI4, Slu, Uls, Ut2, Ut3                            | SL                             |
| 4      | sandiger Lehm<br>schluffiger Lehm<br>Lehm     | sL<br>uL<br>L   | St3, Ts4, Ls4, Lts, Lt2,<br>Ls3, Ls2, Lu, Ut4, Ts3 | L, sL                          |
| 5      | schluffig toniger Lehm<br>toniger Lehm<br>Ton | utL<br>tL<br>T  | Tu3, Lt3, Tu2, TI, Ts2, Tt,<br>Tu4                 | LT, T                          |

## **Bodenreaktion (pH-Wert)**

Unter der Bodenreaktion versteht man die Konzentration der freien und austauschbaren Wasserstoff-Ionen (H<sup>+</sup>). Die Messgröße dafür ist der pH-Wert. Die Messung des pH-Wertes erfolgt in einer Bodensuspension (Aufschlämmung) mit einer Messelektrode. Als Suspensionsmittel wird eine 0,01 molare CaCl<sub>2</sub>-Lösung verwendet.

## 4. Abhandlung der einzelnen Nährstoffe

## 4.1 Stickstoff (N)

Ziel der Stickstoffdüngung ist es, möglichst genau die Differenz zwischen Pflanzenbedarf und N-Angebot aus dem Boden auszugleichen. Entscheidend für einen ökonomisch <u>und</u> ökologisch sinnvollen N-Einsatz ist sowohl die absolute Höhe der N-Gaben als auch die sachgerechte Mengenverteilung während der Vegetation.

Ein Pflanzenbestand deckt seinen N-Bedarf im Wesentlichen

- aus dem zu Vegetationsbeginn in der Wurzelzone vorhandenen mineralischen Stickstoff (N<sub>min</sub>).
- aus dem während der Vegetationsperiode durch Abbau organischer Stoffe (Humus) freiwerdenden Stickstoff (N-Nachlieferung).
- aus dem mit Wirtschaftsdüngern/Sekundärrohstoffen und mineralischen Düngemitteln zugeführten Stickstoff.

Leguminosen nutzen außerdem den durch Knöllchenbakterien gebundenen Luftstickstoff.

## 4.1.1 Ermittlung der N-Nachlieferung des Bodens

Vor der Düngung sollten eigene  $N_{\text{min}}$ -Werte bzw. die von den Landwirtschaftskammern veröffentlichten Analysendaten zur Ermittlung des N-Gehaltes des Bodens genutzt werden. Dabei besitzen die Ergebnisse der eigenen Proben grundsätzlich die höchste Aussagekraft.

Tabelle 4: Im Mittel anrechenbare N<sub>min</sub>-Werte in Abhängigkeit von der Bodengüte und der Kultur (n. Landwirtschaftskammer NRW)

| ·                     |                                |                       |  |  |  |  |  |  |  |
|-----------------------|--------------------------------|-----------------------|--|--|--|--|--|--|--|
| S, IS, sU, flachgr. S | ssL, IU                        | sL, uL, L, utL, tL, T |  |  |  |  |  |  |  |
| Winterweizen          |                                |                       |  |  |  |  |  |  |  |
| 40                    | 50                             | 60                    |  |  |  |  |  |  |  |
| Wint                  | ergerste, Winterroggen, Tritic | cale                  |  |  |  |  |  |  |  |
| 30                    | 40                             | 50                    |  |  |  |  |  |  |  |
|                       | Winterraps                     |                       |  |  |  |  |  |  |  |
| 25                    | 35                             | 45                    |  |  |  |  |  |  |  |
|                       | Zuckerrüben                    |                       |  |  |  |  |  |  |  |
| 50                    | 60                             | 70                    |  |  |  |  |  |  |  |
| Mais, Kartoffeln      |                                |                       |  |  |  |  |  |  |  |
| 40                    | 50                             | 60                    |  |  |  |  |  |  |  |
|                       |                                |                       |  |  |  |  |  |  |  |

Die anrechenbaren N-Mengen aus dem Bodenvorrat zu Vegetationsbeginn schwanken von Jahr zu Jahr, weshalb zur Düngebedarfsermittlung jährlich aktuelle N<sub>min</sub>-Richtwerte von der Landwirtschaftskammer veröffentlicht werden. Der tatsächliche N-Düngebedarf ergibt sich aus dem N-Bedarf der Kulturen abzüglich des Bodenvorrates und standortspezifischer Korrekturen Dieses als Sollwertschema bezeichnete Verfahren hat sich für alle wichtigen Ackerkulturen bewährt. Der Düngebedarf kann über organische oder mineralische Dünger gedeckt werden.

Tabelle 5: N-Düngungsempfehlung für Getreide und Raps

|                      | Probenah-<br>me |                    | N-<br>Sollwert    | Empfohlene Düngergaben                                             |            |                                                        |                                       |  |  |
|----------------------|-----------------|--------------------|-------------------|--------------------------------------------------------------------|------------|--------------------------------------------------------|---------------------------------------|--|--|
| Kultur               | Zeit-<br>punkt  | Tie-<br>fe<br>(cm) | unkorri-<br>giert | Anzahl<br>Gaben                                                    | kg/h<br>a  | Startgabe<br>Anmerkung                                 | übrige Gaben                          |  |  |
| Winterwei-<br>zen    | Febru-<br>ar    | 0-90               | 200               | 3 Ga-<br>ben                                                       | 50 -<br>60 | + 20 kg/ha bei schwach                                 | restliche Gaben<br>verteilen auf eine |  |  |
| Wintertritica-<br>le | Febru-<br>ar    | 0-90               | 190               | 3 Ga-<br>ben                                                       | 45 -<br>55 | entwickelten, - 20 kg/ha bei<br>sehr üppigen Beständen | Schossergabe<br>(EC 30-32 und ei-     |  |  |
| Wintergerste         | Febru-<br>ar    | 0-90               | 180               | 3 Ga-<br>ben                                                       | 40 -<br>50 | (Gesamtgabe bleibt unver-                              | ne Spätgabe (EC 37-49)                |  |  |
| Winterrog-<br>gen    | Febru-<br>ar    | 0-90               | 180               | 3 Ga-<br>ben                                                       | 40 -<br>50 | underty                                                |                                       |  |  |
| Sommerwei-<br>zen    | vor<br>Saat     | 0-90               | 190               | 3 Ga-<br>ben                                                       | 50 -<br>60 |                                                        |                                       |  |  |
| Sommer-<br>gerste    | vor<br>Saat     | 0-90               | 140               | 1 Gabe 30-32)                                                      | zur Sa     | at, Gaben über 100 kg/ha tei                           | len (30 kg/ha in EC                   |  |  |
| Braugerste           | vor<br>Saat     | 0-90               | 110               | in der Regel eine Gabe zur Saat                                    |            |                                                        |                                       |  |  |
| Hafer                | vor<br>Saat     | 0-90               | 100               | in der neger eine Gabe zur Saat                                    |            |                                                        |                                       |  |  |
| Winterraps           | Febru-<br>ar    | 0,90               | 200               | $60-70\ \%$ zu Vegetationsbeginn, $30-40\ \%$ als Anschlussdüngung |            |                                                        |                                       |  |  |

| Korrekturwerte (Zu-/Abschlag in kg/ha N): |                                                                                                                     |      |  |  |  |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|--|
|                                           | Standorteigenschaften                                                                                               |      |  |  |  |  |  |
|                                           | kalte untätige Böden (utL, tL, T)                                                                                   | + 20 |  |  |  |  |  |
|                                           | flachgründige Sandböden                                                                                             | + 20 |  |  |  |  |  |
| Getreide                                  | Bewirtschaftungsverhältnisse                                                                                        |      |  |  |  |  |  |
| und<br>Raps                               | <ul> <li>Standorte ohne organisch Düngung, regelmäßige Strohabfuhr, hack-<br/>fruchtbetonte Fruchtfolgen</li> </ul> | + 30 |  |  |  |  |  |
| парэ                                      | <ul> <li>langjährige organische Düngung, je GV/ha</li> </ul>                                                        | - 10 |  |  |  |  |  |
|                                           | Vorfrucht                                                                                                           |      |  |  |  |  |  |
|                                           | Weizen nach Getreide (einschließlich Mais)                                                                          | + 20 |  |  |  |  |  |
|                                           | Gerste, Roggen, Triticale nach Blattfrucht (außer Mais)                                                             | - 20 |  |  |  |  |  |
|                                           | Ertragsniveau                                                                                                       |      |  |  |  |  |  |
|                                           | Erträge über 40 dt/ha                                                                                               | + 30 |  |  |  |  |  |
| nur Raps                                  | Erträge unter 25 dt/ha                                                                                              | - 30 |  |  |  |  |  |
| nui naps                                  | Bestandsentwicklung                                                                                                 |      |  |  |  |  |  |
|                                           | schlecht entwickelte Bestände                                                                                       | + 20 |  |  |  |  |  |
|                                           | sehr gut entwickelte Bestände                                                                                       | - 20 |  |  |  |  |  |
| Beim Anbau                                | von E-Weizen wird ein Zuschlag von 20 kg/ha N empfohlen.                                                            | •    |  |  |  |  |  |

Tabelle 6: N-Sollwerte und Korrekturwerte für Kartoffeln

|                                                          |                       |                    | Bemerkunger                                                                                                                                                                                                               | 1            |               |             |          |  |
|----------------------------------------------------------|-----------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|-------------|----------|--|
| Zeitpunkt<br>vor Pflan-<br>zen                           | Tiefe<br>(cm)<br>0-60 | unkorrigiert       | Der N-Bedarf von Kartoffeln richtet sich sehr stark nach Sorte und Verwertungsziel. Daher kann kein einheitlicher N-Sollwert genannt werden. Innerhalb der oben genannten Spanne gilt folgende Reihenfolge: (siehe unten) |              |               |             |          |  |
| N-Bedarf                                                 | Soll-<br>wert         |                    |                                                                                                                                                                                                                           | ·            |               |             |          |  |
| sehr hoch                                                | 24                    | <b>0</b> Bintje, f | ontane, Martie                                                                                                                                                                                                            | ma           |               |             |          |  |
| sehr hoch -<br>hoch                                      | 22                    | 0 Anosta,          | Fresco, Climax                                                                                                                                                                                                            | (Industrie), | Felsina,      |             |          |  |
| hoch                                                     | 20                    | 0 Premie           | re (Industrie), A                                                                                                                                                                                                         | rcade, Victo | ria (Industri | e),         |          |  |
| hoch - mittel                                            | 18                    |                    | Premiere (Speise), Victoria (Speise),Friesländer, Velox, Hansa, Granola, und alle Frühkartoffeln und Folienkartoffeln                                                                                                     |              |               |             |          |  |
| mittel                                                   | 16                    | O Agria, E         | Belana, Cilena, C                                                                                                                                                                                                         | Jelly, Marab | el und alle   | mittelfrühe | n Sorten |  |
| mittel - niedr                                           | ig <b>14</b>          | Satina,            | Staffi, Angela                                                                                                                                                                                                            |              |               |             |          |  |
| niedrig                                                  | 12                    | Nicola,            | Filea, Donella, S                                                                                                                                                                                                         | Simone, Pri  | ncess         |             |          |  |
| Sollwertkor                                              | rektur                | •                  |                                                                                                                                                                                                                           |              |               |             |          |  |
|                                                          |                       |                    |                                                                                                                                                                                                                           | Beispiel     |               |             |          |  |
| Sollwert nad                                             |                       |                    |                                                                                                                                                                                                                           | 120          |               |             |          |  |
| N-Nachlieferung des<br>Standorts                         |                       | s                  | sehr gering<br>niedrig<br>mittel<br>hoch                                                                                                                                                                                  | - 20         |               |             |          |  |
| N-Freisetzung ohne<br>aus der Gründüngung mittel<br>hoch |                       | mittel             | - 15                                                                                                                                                                                                                      |              |               |             |          |  |
| Korrigierter Sollwert                                    |                       |                    |                                                                                                                                                                                                                           | 85           |               |             |          |  |
| N <sub>min</sub> -Gehalt im Boden (0 - 60 cm)            |                       |                    |                                                                                                                                                                                                                           | - 20         |               |             |          |  |
| N-Düngeber                                               | darf                  |                    |                                                                                                                                                                                                                           | 65           |               |             |          |  |

Tabelle 7: N-Sollwerte und Korrekturfaktoren für Zuckerrüben und Futterrüben

| Sollwert (unkorrigiert), 0 - 90 cm:                              |                       |
|------------------------------------------------------------------|-----------------------|
| Zuckerrüben 180 kg/ha N                                          |                       |
| Futterrüben 200 kg/ha N                                          |                       |
| Untersuchungstermin: März                                        |                       |
| Sollwertkorrektur                                                | Korrekturwert (kg/ha) |
| nach Standort:                                                   |                       |
| humusarme, leichte Sandböden (S)                                 | + 20                  |
| kalte, umsetzungsträge Böden (utL, tL, T)                        | + 20                  |
| nach Viehbesatz                                                  |                       |
| je GV/ha                                                         | - 16                  |
| nach Zwischenfrucht                                              |                       |
| guter Aufwuchs                                                   | - 20                  |
| sehr guter Aufwuchs                                              | - 40                  |
| Die Summe der Zu-/Abschläge sollte 40 kg/ha N nicht übersteigen! |                       |
| Beispiel: Zuckerrüben auf Lössboden (uL), 1,3 GV/ha              |                       |
| Sollwert                                                         | 180                   |
| + Zuschlag für Standort                                          | 0                     |
| - Abschlag für Viehbesatz                                        | 21                    |
| - Abschlag für Zwischenfrucht                                    | 0                     |
| = korrigierter Sollwert                                          | 159                   |
| - N <sub>min</sub> -Wert                                         | 40                    |
| = Düngebedarf                                                    | 119                   |

Um die N-Nachlieferung abzuschätzen, bieten sich folgende Methoden an:

- Anlage eines Düngefensters
- Nitrat-Schnelltest (nach Wollring und Wehrmann)
- N-Tester und N-Sensor (optische Messung der Grünfärbung)

## 4.1.2 Ermittlung des N-Düngebedarfs im Grünland

Der N-Düngebedarf des Grünlandes ist stark abhängig vom Standort und der Nutzung. Der *Tabelle 8* kann die empfohlene Düngungshöhe und Gabenteilung entnommen werden.

Tabelle 8: Stickstoffdüngeempfehlung Grünland zur Qualitätsfuttererzeugung (Ziel: hohe Energiekonzentrationen) mineralische und organische Düngung

| Wachstumsbedingungen/         | Brutto-<br>gesamt-<br>ertrag | unterstellte Leistung aus-<br>Schnitt- und Weidenut-<br>zung je ha |             |                    | Düngeempfehlung in kg |    |    |    | N/ha |       |
|-------------------------------|------------------------------|--------------------------------------------------------------------|-------------|--------------------|-----------------------|----|----|----|------|-------|
| Ertragsvermögen               |                              | Schnitt                                                            | W           | eide               | Nutzung               |    |    |    |      |       |
|                               | dt/ha TM                     | dt TM                                                              | kg<br>Milch | kg Tier-<br>körper | 1.                    | 2. | 3. | 4. | 5.   | Summe |
| niedrig (Extensivie-<br>rung) |                              |                                                                    |             |                    |                       |    |    |    |      |       |
| Stand- u. Umtriebsweide       | 60                           | 0                                                                  | 5500        | 600                | 30                    | 30 |    |    |      | 60    |
| 1 Schnitt + Nachweide         | 65                           | 20                                                                 | 4250        | 450                | 70                    | 20 | 20 |    |      | 110   |
| 2 Schnitte + Nachweide        | 70                           | 45                                                                 | 2250        | 250                | 70                    | 70 | 20 | 20 |      | 180   |
| 3 Schnitte + Nachweide        | 75                           | 65                                                                 | 1000        | 100                | 80                    | 70 | 60 | 20 |      | 230   |
| 4 Schnitte                    | 80                           | 80                                                                 | 0           | 0                  | 80                    | 70 | 60 | 50 |      | 260   |
| mittel                        |                              |                                                                    |             |                    |                       |    |    |    |      |       |
| Stand- u. Umtriebsweide       | 75                           | 0                                                                  | 7000        | 750                | 30                    | 30 |    |    |      | 60    |
| 1 Schnitt + Nachweide         | 80                           | 25                                                                 | 5250        | 550                | 80                    | 20 | 20 |    |      | 120   |
| 2 Schnitte + Nachweide        | 90                           | 55                                                                 | 3250        | 350                | 90                    | 70 | 20 | 20 |      | 200   |
| 3 Schnitte + Nachweide        | 95                           | 80                                                                 | 1500        | 150                | 90                    | 70 | 60 | 20 |      | 240   |
| 4 Schnitte                    | 100                          | 100                                                                | 0           | 0                  | 90                    | 80 | 70 | 60 |      | 300   |
| hoch                          |                              |                                                                    |             |                    |                       |    |    |    |      |       |
| Stand- u. Umtriebsweide       | 90                           | 0                                                                  | 8500        | 900                | 30                    | 20 | 20 |    |      | 70    |
| 1 Schnitt + Nachweide         | 95                           | 30                                                                 | 6000        | 650                | 80                    | 30 | 20 | 20 |      | 150   |
| 2 Schnitte + Nachweide        | 105                          | 65                                                                 | 3750        | 400                | 90                    | 70 | 20 | 20 |      | 200   |
| 3 Schnitte + Nachweide        | 115                          | 95                                                                 | 1750        | 200                | 90                    | 80 | 70 | 20 | 20   | 280   |
| 4 Schnitte + Nachweide        | 120                          | 115                                                                | 500         | 50                 | 100                   | 80 | 70 | 60 | 20   | 330   |
| 5 Schnitte                    | 130                          | 130                                                                | 0           | 0                  | 100                   | 80 | 80 | 60 | 60   | 380   |

# 4.1.3 Düngebedarfsermittlung bei Dauerkulturen (Obst, Reben, Beerenobst)

Das bisher erläuterte Prinzip ist bei Dauerkulturen wie Obst, Reben usw. nur sehr schwer zu verwirklichen, weil als Nettoentzug mit den genutzten Früchten

oftmals nur wenig Stickstoff endgültig entzogen wird. Andererseits ist aber der jährliche Bedarf der Pflanzen zur Bildung von Blättern, Holz usw. recht hoch. Vielfach verbleiben große Mengen der jährlich nachwachsenden Pflanzenteile bei Mulchwirtschaft auf der Fläche und bewirken sehr hohe N-Lieferungen des Bodens.

Für die Bemessung der N-Düngung gibt es daher zwei Möglichkeiten:

- Kalkulation der N-Lieferung auf Grund von Erfahrungswerten. Entscheidende Einflussgrößen sind dafür der Humusgehalt, das Alter der Anlage, die Tiefgründigkeit der Böden und der Witterungsverlauf.
- Die Analyse des Bodens auf den Gehalt an löslichem Stickstoff (N<sub>min</sub>) und Ergänzung mit Mineraldünger auf bestimmte Sollwerte. Bei Dauerkulturen haben sich z. T. zwei Termine für die N<sub>min</sub>-Methode als vorteilhaft erwiesen (Austrieb, Blüte).

## 4.1.4 Wirkung des Stickstoffs in organischen Düngern

Die Düngewirkung von organischen Düngern ist nach Düngerart, Anwendungszeitpunkt und in Abhängigkeit der Kultur sehr unterschiedlich. Jauche, Gülle und Gärsubstrate weisen hohe Anteile an Ammonium-N auf, die bei optimaler Terminierung zu 100 % düngewirksam werden. Die N-Verfügbarkeit von Geflügelkot, Mist und Kompost nimmt von ca. 50 % in dieser Reihenfolge bis ca. 5 % vom Gesamt-N-Gehalt ab.

Die Nährstoffgehalte organischer Dünger tierischer Herkunft unterliegen starken Schwankungen. Wichtige Einflussgrößen sind u. a. TS-Gehalt, Futtergrundlage, Milchleistung sowie die Nutzungsrichtung (Bullenmast, Milchvieh).

Deshalb sollten als Grundlage für eine gezielte Düngung Gülleanalysen durchgeführt werden. Es wird empfohlen, 1 - 2 x jährlich die Gülle auf TS-Gehalt, Gesamt-N, Ammonium-N, Phosphat, Kali, Magnesium, bei Hühnergülle auch Kalk, untersuchen zu lassen. Bei der Schweinegülle ist auch die gelegentliche Analyse von Kupfer vorteilhaft. Für die Bestimmung des Ammoniumstickstoffs haben sich Schnelltests wie z.B. "Quantofix" gut bewährt, weil sie auf dem Betrieb einfach

und schnell durchgeführt werden können. Für die Höhe der Einzelgabe ist der Ammoniumgehalt die wichtigste Größe. Der Ammonium-N kann bei verlustarmer Ausbringung wie Mineraldünger-N bewertet werden. Liegen keine Analysewerte vor, ist mit den Faustzahlen für die anrechenbaren N-Mengen in organischen Düngern zu rechnen (siehe Anhangstabelle 3)

## 4.1.5 Wirkungsweise mineralischer N-Formen

Unterschiede in der Wirkungsgeschwindigkeit spielen eine wichtige Rolle. Dies sollte bei der Wahl des Düngers und des Anwendungstermins gezielt genutzt werden. Zahl und optimaler Anwendungstermin der Teilgaben sind abhängig von der gewählten Düngerform.

- Sofort wirksam sind N-Dünger mit hohem Nitratanteil (z.B. Kalksalpeter), die sich daher als Kopfdünger besonders eignen.
- <u>Mäßig schnell</u> wirken die Ammoniumdünger (z.B. SSA). Ammonium kann zwar sofort von den Wurzeln aufgenommen werden, ist im Boden aber wenig beweglich. Erst nach Umwandlung in Nitrat wird eine bessere Beweglichkeit erreicht. Die Wirkungsgeschwindigkeit von Amiddüngern (Harnstoff) ist gegenüber Ammoniumdüngern nur unwesentlich verzögert. Der Prozess der Umwandlung (Urolyse) von Harnstoff zu Ammonium benötigt lediglich einen Zeitraum von 1 bis 4 Tagen in Abhängigkeit von der Bodentemperatur.
- <u>Schnell und mäßig schnell</u> wirken Kombinationen der Nährstoffformen (z.B. Kalkammonsalpeter, Ammonium-Nitrat-Harnstoff-Lösung, ASS).
- <u>Langsamer und nachhaltig</u> wirkend ist Kalkstickstoff, da dieser über mehrere Zwischenstufen zu Nitrat umgesetzt wird.
- Stabilisierte N-Dünger: Die Nitratbereitstellung aus ammonium- bzw. amidhaltigen Düngern kann durch den Zusatz von Nitrifikationshemmern verlangsamt werden. Nach Düngemittelgesetz sind verschiedene Nitrifikationshemmer zugelassen.

 Sehr langsam und nachhaltig wirken neu entwickelte Handelsdünger. Stickstoff liegt in diesen Produkten in besonderer organischer Bindung vor, oder er wird durch Zusätze oder Hüllen "gebremst" (Depotdünger, Langzeitdünger).

Bei den Nebenbestandteilen ist von Bedeutung, ob sie z.B. wie das Sulfat als Nährstoff positiv wirken. Neben diesen stofflichen Einflüssen sind die physikalischen Eigenschaften der Düngemittel für die Pflanzenverträglichkeit von Bedeutung. Hat beispielsweise AHL eine hohe Oberflächenspannung (Markenware), so ist die Gefahr von Verätzungen bei Blattdüngung wesentlich geringer.

Von den Nebenwirkungen interessiert (außer der herbiziden Wirkung des Kalkstickstoffs) vor allem der Einfluss auf die Bodenreaktion. Die scheinbare Vorliebe mancher Pflanzen für eine bestimmte N-Form (Nitrat für Zuckerrüben, Ammonium für Kartoffeln) ergibt sich vor allem aus dem unterschiedlichen Einfluss der N-Dünger auf die Bodenreaktion (vgl. Anhang Tabelle 4).

#### 4.1.6 Kalkstickstoff

Beim Kalkstickstoff handelt es sich um eine besondere N-Form, die auf Grund ihrer speziellen Sonderwirkungen sehr gezielt eingesetzt wird.

Neben der stabilen N-Wirkung und dem hohen Kalkgehalt ist besonders der Effekt auf Schadpflanzen sowie auf verschiedene pilzliche und tierische Schaderreger interessant.

Durch den Einsatz von Kalkstickstoff lässt sich im Ackerbau die Anwendung von Pflanzenschutzmitteln in gewissem Umfang reduzieren. Im Grünland ist die Kalkstickstoffdüngung ein Beitrag zur Bestandsverbesserung und zur Parasitenbekämpfung. Im Gemüsebau füllt der Kalkstickstoff Lücken, die durch Pflanzenschutzmittel nicht (mehr) abgedeckt werden können. Um die Sondereffekte des Kalkstickstoffs voll ausnutzen zu können, ist eine gezielte Anwendung wichtig.

## 4.2. Phosphat $(P_2O_5)$

## 4.2.1 Phosphat im Boden

Phosphor (P) liegt im Boden in organischen und anorganischen Bindungsformen vor. Dabei nimmt der anorganisch gebundene Phosphor in unseren Mineralböden einen Anteil von 20 bis 80 % ein. Je nach Bindungsform und Löslichkeit trägt er in unterschiedlichem Maß zur Pflanzenernährung bei.

Vereinfacht dargestellt lassen sich drei unterschiedliche Phosphatfraktionen im Boden unterscheiden:

- in der Bodenlösung verfügbares Phosphat (direkt pflanzenverfügbar),
- labiles Phosphat (leicht gebundenes Phosphat, nach Lösung pflanzenverfügbar),
- stabiles Phosphat (fest gebundenes Phosphat, trägt in der Regel nicht zur Pflanzenernährung bei).

In der Bodenlösung befindet sich nur ein sehr geringer Anteil des im Boden vorhandenen Phosphats. Bei gut versorgten Böden sind dies in der Krume etwa  $1 - 2 \text{ kg P}_2\text{O}_5$  pro Hektar. Demgegenüber liegen 450 - 900 kg  $\text{P}_2\text{O}_5$  in der labilen und zwischen 3000 und 6000 kg  $\text{P}_2\text{O}_5$  pro Hektar in der stabilen Fraktion vor.

Wichtige Vertreter der stabilen Fraktion sind Calcium-, Eisen- und Aluminiumphosphate als anorganische und Phytate als organische Verbindungen. Die als
labile Fraktionen bezeichneten Bodenphosphate beziehen sich auf locker gebundene Formen, wie die spezifische Sorption der Phosphatfraktion an Oxide
und Hydroxide des Eisens und des Aluminiums oder an Tonminerale. Des weiteren gehören dazu Calcium-, Magnesium- Kalium-, Natrium- und Ammoniumphosphate in Abhängigkeit von der Kationenkonzentration der Bodenlösung.
Zum labilen Phosphat sind auch leicht mineralisierbare organisch gebundene
Phosphate zu rechnen.

Zwischen den einzelnen Fraktionen bestehen dynamische Gleichgewichte. Die Erhöhung der Phosphatkonzentration der Bodenlösung, z.B. durch Düngung, hat

zur Folge, dass gelöstes Phosphat rasch in gebundene Fraktionen überführt wird. Mit zunehmender Dauer steigt die Festigkeit der Verbindungen. Umgekehrt wird bei Absenkung des Gehalts der Bodenlösung durch Phosphataufnahme in die Pflanze aus der labilen Fraktion leicht gebundenes Phosphat nachgeliefert und somit die Bodenlösung wieder aufgefüllt. Eine ausreichend schnelle Nachlieferung von gebundenem Phosphat in die Bodenlösung setzt einen ausreichenden Boden-Vorrat an labilem Phosphat im Boden voraus.

Die schnelle Bindung von löslichem "Düngephosphat" an die feste Phase des Bodens ist die Ursache dafür, dass die Auswaschungsgefährdung von Phosphat deutlich niedriger ist als von Stickstoff und auch Kalium. Auf normal versorgten Böden liegt die Auswaschung in der Regel nicht über 0,3 - 1 kg Phosphat pro Hektar und Jahr.

Die Bildung der unterschiedlichen Phosphatverbindungen im Boden und deren Verfügbarkeit wird u.a. in erheblichem Maß vom pH-Wert des Bodens beeinflusst. Am höchsten ist die Mobilität des Phosphats im schwach sauren bis neutralen Bereich, also bei pH-Werten zwischen 6 und 7. Oberhalb und unterhalb dieses Bereiches sinkt die Phosphatverfügbarkeit.

#### 4.2.2 Phosphat in der Pflanze

Phosphor erfüllt verschiedene Aufgaben in der Pflanze:

- als Zellbaustein zur Aufrechterhaltung der Zellstruktur (z.B. Zellmembranen)
- als Baustein der DNS und RNS (Träger der Erbinformationen)
- als Bestandteil lebenswichtiger Fermente zur Steuerung von Zellfunktionen
- als Energieträger ist es an allen Stoffwechselvorgängen wie Kohlenhydrat-, Fett- und Eiweißstoffwechsel beteiligt.

Auf Grund der elementaren Funktionen in der Pflanze trägt Phosphor dazu bei, die Krankheits- und Frostresistenz zu erhöhen.

Durch ein stärkeres Wurzelwachstum wird allgemein die Wasser- und Nährstoffversorgung verbessert. Die Bestockung des Getreides sowie das vegetative Wachstum der Pflanzen werden positiv beeinflusst. Eine direkte Ertragswirkung besteht, indem Blüten- und Samenbildung, Fruchtansatz und Kornzahl pro Ähre erhöht werden. Daneben verbessert Phosphor die Qualität des Erntegutes wie Tausendkornmasse, Rohproteingehalt und auch die Backqualität.

## 4.2.3 Phosphaternährung und -düngung im Pflanzenbau

Die eingangs beschriebene geringe Mobilität des Phosphats (Kap. 4.2.1) hat zur Folge, dass nicht das gesamte Bodenvolumen, sondern nur der von den Pflanzen durchwurzelte Teil des Bodens zur Phosphaternährung der Pflanzen beiträgt. Phosphat im Boden, welches weiter als 3 - 5 Millimeter von den Wurzeln entfernt ist, kann in der Regel nicht mehr aufgenommen werden. Daher muss der Vorrat an pflanzenverfügbarem Phosphat im Boden viel höher sein als die tatsächlich von den Pflanzen aufgenommene Phosphatmenge. Weiterhin ist aus diesem Sachverhalt leicht abzuleiten, dass Kulturen mit einem weit verzweigten Wurzelsystem (Getreide) ein größeres Bodenvolumen erschließen und damit ein besseres Phosphataneignungsvermögen besitzen als Pflanzenarten mit einem nur gering ausgebildeten Wurzelsystem (Hackfrüchte, Mais). In einem nicht verdichteten und ein optimales Gefüge aufweisenden Boden ist auch in der Regel eine ausreichende Phosphataufnahme gewährleistet.

Die Phosphatdüngung muss sich aus diesen Gründen an der Höhe des pflanzenverfügbaren Bodenvorrates und am Phosphataneignungsvermögen der angebauten Kulturart orientieren. Ziel der Phosphatdüngung, wie auch der Grunddüngung mit Kalium und Magnesium, ist die Einstellung eines für die Ernährung der Pflanzen ausreichenden, optimalen Nährstoffgehaltes des Bodens und der Ersatz der dem Boden durch die Ernten entzogenen Nährstoffe sowie die Erhaltung eines optimalen Bodenmilieus. Durch das vom VDLUFA entwickelte Konzept der Gehaltsklassen liegt ein Einstufungsverfahren zur Klassifizierung des im Boden ermittelten Nährstoffgehaltes vor.

Die Phosphatverfügbarkeit im Boden wird durch die Bodenuntersuchung festgestellt. Als optimal zur Ausschöpfung des Ertragspotentials ist dabei die Gehaltsklasse C (*Tabelle 9*) anzusehen. Hier wird in der Regel eine Phosphatdüngung in Höhe der Erhaltungsdüngung empfohlen. Ernterückstände sind anzurechnen. In den Gehaltsklassen D und E sollte die Phosphatdüngung unterhalb der Erhaltungsdüngung liegen, bzw. in der Gehaltsklasse E wird keine Düngung empfohlen. Liegt die Phosphatversorgung des Bodens unterhalb der Gehaltsklasse C, sind Zuschläge bei der Düngung erforderlich, um möglichst rasch eine optimale Nährstoffversorgung des Bodens und damit einhergehend optimale Erträge zu erreichen.

Tabelle 9: Gehaltsklassen und zugehörige Versorgungsstufen für Phosphat in Acker- und Grünland, CAL-Methode (n. Landwirtschaftskammer NRW)

| ·                  | mg P₂O₅/100 g Boden  Bodenart für Acker und Grünland |                                    |  |  |
|--------------------|------------------------------------------------------|------------------------------------|--|--|
| Gehaltsklasse      |                                                      |                                    |  |  |
|                    | S, IS, sU, ssL, IU, sL,                              | utL, tL, T, flachgründiger<br>Sand |  |  |
|                    | uL, L                                                |                                    |  |  |
| A (sehr niedrig)   | bis 3                                                | bis 5                              |  |  |
| <b>B</b> (niedrig) | 4 – 9                                                | 6 – 13                             |  |  |
| C (anzustreben)    | 10 – 18                                              | 3 14 – 24                          |  |  |
| <b>D</b> (hoch)    | 19 – 32                                              | 25 – 38                            |  |  |
| E (sehr hoch)      | ab 33                                                | ab 39                              |  |  |

Die Phosphatdüngung sollte an der Fruchtfolge ausgerichtet werden. Die bedürftigen Kulturen (Hackfrüchte, Mais) erhalten auch in der Gehaltsklasse C eine Phosphatdüngung oberhalb des Entzuges. Das nachfolgende Getreide wird entsprechend weniger mit Phosphat gedüngt, sodass die Phosphatbilanz über die Fruchtfolge betrachtet ausgeglichen ist.

Generell beeinflussen folgende Faktoren die Phosphatverfügbarkeit im Boden und die Phosphataufnahme in die Pflanze:

| Zunahme von           | Wirkung auf                    | Phosphaternährung |
|-----------------------|--------------------------------|-------------------|
| Bodenart (Feinanteil) | Phosphatverfügbarkeit          | +                 |
| Wassergehalt          | Phosphatverfügbarkeit          | +                 |
| Bodenverdichtung      | Wurzelwachstum                 | -                 |
| Bodentemperatur       | Phosphatverfügbarkeit          | +                 |
|                       | Wurzelwachstum                 | +                 |
|                       | physiolog. Aktivität d. Pflanz | ze +              |
| pH-Wert               | Phosphatverfügbarkeit          | +                 |
|                       | (optimal pH 6-7)               |                   |
| Biologische Aktivität | Phosphatverfügbarkeit          | +                 |
|                       | (Mineralisierung org. Phosp    | hate)             |
| Düngung               | Phosphatverfügbarkeit          | +                 |

## 4.2.4 Wirkung der Phosphatdüngung auf die Qualität verschiedener Kulturen

#### Kartoffeln

Eine optimale Phosphatversorgung erhöht neben dem Knollenertrag auch den Stärkegehalt der Kartoffel. Daneben wird noch der Knollenansatz erhöht, die Keimfähigkeit von Pflanzkartoffeln verbessert und die Lagereignung der Knollen positiv beeinflusst.

#### Zuckerrüben

Zuckerrüben reagieren besonders dankbar auf eine Phosphatdüngung. Dabei werden nicht nur der Rübenertrag, sondern auch der Zuckergehalt und die Zuckerausbeute verbessert.

#### Getreide

Eine ungenügende Phosphatdüngung führt bei allen Getreidearten zu einem Rückgang der Tausendkornmasse, des Hektolitergewichtes und zu einer verschlechterten Kornausbildung. Bei Weizen sinken Klebergehalt und Backvolu-

men, bei Braugerste verringern sich Extraktgehalt und Eiweißlösungsgrad. Zur Erzeugung von Qualitätsgetreide jeglicher Art ist daher eine optimale Phosphatversorgung unumgänglich.

#### Futtergräser und Gemüse

Phosphat beeinflusst die Vitaminbildung in der Pflanze entscheidend. So werden besonders die Gehalte an Carotin, Vitamin D und Vitamin B 1 durch eine Phosphatdüngung erhöht.

## 4.2.5 Phosphatdüngemittel

## Vollaufgeschlossene Phosphate

Beim Aufschluss der Rohphosphate (chemisch bzw. thermisch) kommt es darauf an, die Apatitstruktur des Ausgangsmaterials zu zerstören und das Phosphat in eine gut lösliche und damit pflanzenverfügbare Form zu überführen. Phosphat in vollaufgeschlossener Form ist z.B. enthalten im PK-Dünger RHEKAPHOS 20/30 oder im Thomaskali.

## Superphosphat, Triple-Superphosphat

Superphosphat entsteht durch Aufschluss von Rohphosphaten mit Schwefelsäure. Dabei bildet sich ein Gemisch aus Monocalciumphosphat und Gips.

Beim Aufschluss von Rohphosphat mit Phosphorsäure entsteht ein hochkonzentrierter Phosphatdünger, das Triplesuperphosphat. Die technische Herstellung erfolgt durch kontinuierliches Vermischen von feinstvermahlenem Rohphosphat mit den genannten Säuren. Beide Phosphatdünger sind mindestens zu 93 % wasserlöslich.

## Teilaufgeschlossene Rohphosphate

Phosphatdünger dieser Gruppe unterscheiden sich durch ihre unterschiedlichen Gehalte an mineralsäurelöslichem und wasserlöslichem Anteil und somit in den unmittelbar wirksamen Phosphatanteilen.

Aus Kostengründen wird mit einem verminderten Säureeinsatz gearbeitet. Dadurch entstehen Düngemittel, wie PK RHEKAPHOS 12/24 die nur einen bestimmten Anteil an voll aufgeschlossenem Phosphat enthalten.

## Rohphosphate

Unter bestimmten Voraussetzungen können Rohphosphate direkt als Düngephosphate angewendet werden. In Frage kommen diesbezüglich nur weicherdige Rohphosphate und diese auch nur nach feinster Vermahlung, z.B. patent PK. Sie sind in erster Linie geeignet für saure Böden (unter pH 5,5) und für Moorböden.

## 4.2.6 Phosphat in organischen Düngern

Die Rücklieferung über Wirtschaftsdünger ist in viehhaltenden Betrieben erheblich und muss bei der Düngeplanung natürlich berücksichtigt werden. Allerdings schwanken die Gehalte je nach Besatzstärke, Tierart und Fütterung beachtlich. In der Rinder und Schweinegülle sind etwa 80 % des Phosphats, in der Hühnergülle 60 % anorganisch gebunden und für die Pflanzen leicht verfügbar; der Rest ist in relativ festen organischen Bindungen (Phytin) eingebaut.

## 4.3 Kali (K<sub>2</sub>O)

#### 4.3.1 Kali in der Pflanze

## In der Pflanze übernimmt Kali wichtige Aufgaben:

## • Steuerung des Wasserhaushaltes

Kali erhöht den Turgordruck in den Pflanzenzellen und sorgt für eine Regulierung der Spaltöffnungen: → Reduzierte Wasserverdunstung, keine Welketracht, günstiges Abreifeverhalten.

## Verbesserung der Frostresistenz

Eine hohe Kalium-Konzentration im Zellsaft der Pflanze erhöht die Widerstandsfähigkeit gegen Frost: → Verbesserte Winterhärte (Getreide, Obst), geringere Empfindlichkeit bei Spätfrösten (Hackfrüchte, Forstkulturen).

## Festigung der Zellwände

Kalium hilft der Pflanze, Kohlenhydrate und damit Stützgewebe zu produzieren, dadurch wird "schwammiges Gewebe" vermieden: → Gute Standfestigkeit beim Getreide, verbesserte Schalenfestigkeit bei Kartoffeln.

## Erhöhung der Krankheitsresistenz

Gut mit Kali ernährte Pflanzen sind auf Grund verbesserter Eiweißsynthese und geringer Gehalte an löslichen N-Verbindungen weniger anfällig für den Befall mit pilzlichen Krankheitserregern und Blattläusen: → Weniger Stängelfäule beim Mais, weniger Mehltau beim Getreide, weniger Viruskrankheiten.

## • Verbesserung der Qualitätseigenschaften

Kalium hilft beim Einbau löslicher N-Verbindungen und niedermolekularer Kohlenhydrate, reichert somit die gewünschten Inhaltsstoffe in der Pflanze an: → Höherer Zuckergehalt in der Rübe, gehobene TKM beim Getreide, weniger Schwarzfleckigkeit bei Kartoffeln, verbesserte Lagerfähigkeit von Kartoffeln und Gemüse.

#### 4.3.2 Kali im Boden

## Der Kaligehalt im Boden ist abhängig von

- dem Tongehalt des Bodens, da Kalium fast ausschließlich an Tonteilchen gebunden ist. Daher brauchen schwere Böden höhere K-Gehalte (mg/100 g Boden) als z.B. Sandböden, um der Pflanze die gleiche Menge Kali anbieten zu können.
- dem natürlichen K-Gehalt der Tonmineralien, die jedoch diesen Nährstoff nur in geringen Mengen freigeben.
- den N\u00e4hrstoffverlusten in Form von Fixierung (Tonb\u00f6den, z.B. Pseudogleye) oder Verlagerung (Sandb\u00f6den).

## <u>Die Kaliverfügbarkeit im Boden für die Pflanzen wird von folgenden Faktoren beeinflusst:</u>

- Kationenaustauschkapazität und Grad der K-Sättigung
- · Bodenstruktur und Bodenart
- · Wasserhaushalt des Bodens
- K-Gehalt in der Bodenlösung
- Anteil kalifixierender Tonminerale
- Gründigkeit des Bodens und Durchwurzelung durch die Pflanze
- Verdrängung durch Kationen wie z.B. Calcium, Magnesium und Ammonium

Nur bei guter Kaliversorgung des Bodens ist ein für die Pflanze ausreichender Gehalt in der Bodenlösung sichergestellt. Diese austauschbare Kalimenge wird durch die Bodenuntersuchung festgestellt und nach Versorgungsstufen (A bis E) bewertet. Der anzustrebende Bodenvorrat an Kalium richtet sich nach der Kulturart, die innerhalb der Fruchtfolge die höchsten Nährstoffansprüche hat, z.B. Zuckerrüben, Kartoffeln, Körnerraps, Feldgemüse und Mais.

Tabelle 10: Gehaltsklassen und zugehörige Versorgungsstufen für Kali (K₂O) in Acker- und Grünland, CAL-Methode (n. Landwirtschaftskammer NRW)

|                    | mg K₂O/100 g Boden              |                               |            |
|--------------------|---------------------------------|-------------------------------|------------|
|                    | Bodenart für Acker und Grünland |                               |            |
| Gehaltsklasse      | S                               | Is, sU, ssL, IU,<br>sL, uL, L | utL, tL, T |
| A (sehr niedrig)   | bis 2                           | bis 3                         | bis 5      |
| <b>B</b> (niedrig) | 3 – 5                           | 4 – 9                         | 6 – 13     |
| C (anzustreben)    | 6 – 12                          | 10 – 18                       | 14 – 24    |
| D (hoch)           | 13 – 19                         | 19 – 32                       | 25 – 38    |
| E (sehr hoch)      | ab 20                           | ab 33                         | ab 39      |

## 4.3.3 Düngebedarf

Die Ermittlung des Kalibedarfes einer Kultur bzw. einer Fruchtfolge leitet sich aus dem Nährstoffbedarf und dem Korrekturfaktor Bodenuntersuchung ab. Zusätzlich sind Verluste aus Verlagerung und/oder Fixierung zu berücksichtigen. Die konkreten Entzugswerte der Kulturen sind im Anhang (Tabelle 1) aufgeführt.

Der Düngebedarf lässt sich genau durch langjährige regionale Feldversuche feststellen. Rechnerische Düngebilanzen können nur Anhaltspunkte liefern, da sie viele Faktoren der Kaliverfügbarkeit nicht genügend berücksichtigen.

Nach der Düngeverordnung ist ein flächenbezogener Vergleich von Nährstoffzufuhr und –abfuhr vorgeschrieben. Das Ergebnis z.B. in Form einer Feld/Stall-Bilanz stellt eine Orientierungsgröße über Nährstoffflüsse im Betrieb dar. Bei der Interpretation von Nährstoffsalden müssen die Bodenversorgung und der Austrag von Kalium aus dem Boden und Kali-Verluste durch Festlegung berücksichtigt werden. Zusätzlich sind beim Verbleib von Ernterückständen besonders auf leichten Böden die hohen Kali-Verluste, z.B. aus Maisstroh, zu kalkulieren.

#### 4.3.4 Düngeverfahren

Auf mittleren und schweren Böden ab etwa 40 Bodenpunkten oder 10 % Tongehalt kann die Kalidüngung innerhalb der Fruchtfolge in einer Gabe zu der Kulturart mit den höchsten Kaliansprüchen verabreicht werden, z.B. zu Zuckerrüben, Kartoffeln, Feldgemüse, Raps oder Mais. Mit einer Kali-Düngung im Herbst können die positiven Effekte in Form von bodenschonender Überfahrt, Deckung des Pflanzenbedarfes im Herbst und verbesserter Winterfestigkeit der Kulturen genutzt werden. Auf leichteren Standorten ist eine jährliche Kali-Gabe im Frühjahr angeraten.

#### Für die praktische Düngung sind folgende Punkte zu beachten:

- Bei Kalimangel (z.B. durch Kalifixierung) sollte eine einmalige Kaligabe 400 kg K<sub>2</sub>O/ha nicht überschreiten. Bei höherem Bedarf sollten die Mengen geteilt werden.
- Düngung bei Frost ist auf allen Acker- und Grünlandkulturen möglich.
- Kopfdüngung in den Bestand ist problemlos möglich, bei Mais maximal bis zum 4-Blatt-Stadium (allerdings auf tonreichen Böden oft erst zur Folgekultur wirksam).
- Infolge des schlechten N\u00e4hrstoffaneignungsverm\u00f6gens ist bei Mais eine Kalid\u00fcngung vor der Aussaat effizient.
- Rapsdüngung mit Kali (Mg, S) im Keimblattstadium ist ein bewährtes Mittel, um Schneckenbefall zu mindern.
- Aufgrund antagonistischer Wirkungen zeigen sterile K-Dünger wie 60er vergleichsweise weniger deutliche Ertragseffekte als z.B. ein Korn Kali mit Begleitnährstoffen.
- Im ökologischen Anbau sowie auf Extensivflächen darf je nach Richtlinie der Verbände oder des MUNLV Kali nur in sulfatischer Bindung appliziert werden.
   Auf Grünland ist Magnesia-Kainit zugelassen.

#### 4.3.5 Kaliformen

#### Kali liegt für die Landwirtschaft in zwei Düngerformen vor:

- Kaliumchlorid (KCI) für die meisten Ackerkulturen und Grünland
- Kaliumsulfat (K<sub>2</sub>SO<sub>4</sub>, chloridarm) für Sonderkulturen, Kartoffeln, Forstpflanzen, Gemüse- und Gartenbau

Sulfatische Kalidüngemittel eignen sich neben der Kalidüngung besonders auch zur Schwefelversorgung der Kulturen. Kalidüngemaßnahmen zu Vegetationsbeginn sollten bei chloridempfindlichen Kulturen immer in der sulfatischen Kaliform erfolgen. Nach Düngemittelverordnung (DüV) dürfen nur Produkte mit einem Chloridanteil von unter 3% als "chloridarm" deklariert werden.

#### chlorid-liebend:

Zuckerrübe, Futterrübe, Sellerie, Mangold

### chlorid-verträglich:

Getreide, Mais, Raps, Spargel, Grobkohlarten, Rote Beete, Rhabarber, Grünland, Kleegras

## bedingt chlorid-verträglich:

Sonnenblume, Weinrebe, Kernobst, Schwarze Johannisbeere, Pflanz- und Speisekartoffel, Tomate, Radies, Kohlrabi, Feinkohlarten, Erbse, Spinat, Karotte, Lauch, Rettich, Chicorée

## chlorid-empfindlich:

Stärke- und Veredlungskartoffel, Tabak, Rote Johannisbeere, Stachelbeere, Himbeere, Erdbeere, Brombeere, Heidelbeere, Steinobst, Buschbohne, Dicke Bohne, Gurke, Melone, Paprika, Zwiebel, Salat, Frühgemüse, Koniferen, Blumen, Zierpflanzen und alle Unterglaskulturen

## 4.4 Kalk (CaO)

Unerlässliche Voraussetzung für einen nachhaltig gesunden, fruchtbaren Boden und wirtschaftlichen Anbau von Kulturpflanzen ist erwiesenermaßen der richtige Kalkzustand. Kalk trägt mit seinen vielseitigen chemischen, physikalischen und biologischen Wirkungen entscheidend zur natürlichen Bodenfruchtbarkeit bei und erhält ideale Wachstumsbedingungen.

Viele gute Gründe sprechen für eine ausreichende Kalkversorgung des Bodens, denn Kalk

- erhält die optimale Bodenreaktion. Schädliche Bodensäuren sowie toxische Aluminium- und Schwermetallionen werden wirksam gebunden. Insbesondere der Festlegung toxischer Schwermetalle durch Kalk kommt in Zukunft auch im Rahmen der Bodenschutzes - eine immer größere Bedeutung zu
- stabilisiert die Bodenstruktur. Calcium-Ionen lagern sich an Ton- und Humusteilchen an, verbinden diese und bilden größere Krümel. Die Stabilität der Poren und der Verformungswiderstand des Bodens nehmen zu (Gare)
- sichert durch eine verbesserte Bodenstruktur gute Wasserführung und Durchlüftung
- vermindert die Verkrustung und Verschlämmung durch eine stabile Krümelstruktur
- beugt durch die Stabilisierung der Bodenaggregate Erosion vor
- vertieft den Wurzelraum im Boden; bei Kalkmangel kommt es zur Ton - Schluff - Trennung und zu Verdichtungen im Unterboden
- verstärkt die biologische Aktivität. Nur in kalkreichen Böden finden nützliche Kleinlebewesen gute Lebensbedingungen zur Umsetzung von organischer Substanz und zum Aufbau von wertvollem Dauerhumus
- hilft Düngungskosten sparen, da sich die Ausnutzung der anderen Pflanzennährstoffe verbessert. Das pflanzenverfügbare Phosphat nimmt zu, die

Stickstofffreisetzung aus organischer Düngung steigt und das Pflanzenwachstum wird verbessert (siehe *Abbildung 2*, Seite 36).

#### 4.4.1 Kalkbedarf

Die Notwendigkeit einer regelmäßigen Kalkung ergibt sich aus dem zwangsweise auftretenden Kalkverbrauch:

Jährlich verlieren die Böden durch **Pflanzenentzug, Auswaschung und Säureneutralisation** (Säurequellen: atmosphärischer Säureeintrag, organische Säuren, physiologisch sauer wirkende Düngemittel, Wurzel- und Mikrobenatmung) abhängig von Bodenart, Bewirtschaftungsintensität und Witterung ca. 230 bis 530 kg CaO / ha auf Ackerflächen und ca. 170 - 330 kg CaO / ha auf Grünland.

Dieser Kalkverbrauch findet auf allen Standorten statt, wobei es auf leichten Böden zu einer raschen pH-Wert-Absenkung kommt, während bei schweren Böden zunächst die Kalkreserven verbraucht werden - bereits zu Lasten der Bodenstruktur - bevor der pH-Wert absinkt. Bei Einsatz von Gülle führen zusätzlich der Ammonium-N-Anteil sowie die Nitrifikation zu einer Kalkzehrung. Gleiches gilt im Übrigen auch beim Einsatz kalkzehrender, d. h. physiologisch sauer wirkender Düngemittel wie z.B. SSA, ASS, Harnstoff, DAP. Diese spielen durch den stetigen Rückgang kalkhaltiger Dünger eine ständig wachsende Rolle und sind bei der Ermittlung des Kalkbedarfs unbedingt zu berücksichtigen.

## 4.4.2 Düngungsempfehlungen

Grundsätzlich sollte sich die Kalkdüngung wie alle anderen Düngungsmaßnahmen an den Ergebnissen der Bodenuntersuchungen orientieren. Je nach Bodenart und Flächennutzung unterscheiden sich die optimalen pH-Werte. Die Höhe der erforderlichen Kalkmenge wird in dt CaO/ha angegeben. Für die regelmäßige Erhaltungskalkung des Ackerlandes ist die Bodenart, der Humusgehalt und Jahresniederschlag zu berücksichtigen. (siehe *Tabelle 12*). Sind zur Erreichung des anzustrebenden pH-Wertes sehr hohe Kalkgaben erforderlich, sollte zur Vermeidung von unerwünschten Reaktionsstößen die in *Tabelle 12* aufgeführten maximalen Kalkgaben pro Jahr in Abhängigkeit von der Bodenart nicht überschritten werden. Für Grünland gelten die in *Tabelle 13* aufgeführten Werte. Neben dem

Kalkbedarf aus Sicht des optimalen, standortbezogenen pH-Wertes sollten auch die unterschiedlichen Ansprüche der einzelnen Kulturen berücksichtigt werden. Während z.B. Zucker- und Futterrüben, Winterraps, Luzerne, Ackerbohnen u. a. besonders kalkbedürftig sind, reagieren beispielsweise Kartoffeln, Weizen und Roggen auf eine unzureichende Kalkversorgung weniger empfindlich. Daher sollte die regelmäßige Kalkversorgung in der Fruchtfolge entsprechend eingeordnet werden.

Vom VDLUFA wurde ein Vorschlag für bundesweit einheitliche Kalkdüngungsempfehlungen und eine neue Einteilung der pH-Wert-Klassen erarbeitet (siehe Tabelle 11). Die in den Tabellen 12 u. 13 enthaltenden Kalkempfehlungen für Acker- und Grünland sind von der Landwirtschaftskammer NRW an dieses Rahmenschema angepasst worden.

In den Kalktabellen sind bodenart- und humusgehaltsabhängige Ziel-pH-Werte angegeben, die annähernd eingehalten werden sollten. Wenn der pH-Wert im Optimalbereich liegt (Versorgungsstufe C), muss regelmäßig gekalkt werden, um die unvermeidbaren Verluste zu ersetzen (Erhaltungskalkung). Die hierzu im Mittel für drei Jahre benötigten Kalkmengen für Acker- und Grünland sind in den Tabellen 12 und 13 aufgeführt. Sind die pH-Werte bereits deutlicher abgesunken (Versorgungsstufe A oder B), müssen wesentlich höhere Kalkmengen zugeführt werden, um den idealen Zustand wieder herzustellen.

Tabelle 11: pH-Versorgungsstufen und die erforderliche Kalkdüngungsmaßnahmen (n. Landwirtschaftskammer NRW)

| Stufen | Auswirkungen                                                                                                            | Maßnahmen                                                                                     |
|--------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Α      | starke Beeinträchtigung der Bodenstruktur und Nährstoffverfügbarkeit, deutliche Ertragseinbußen bei fast allen Kulturen | Kalkung hat unabhängig von der<br>aktuellen Kultur Vorrang vor an-<br>deren Düngungsmaßnahmen |
| В      | beeinträchtigte Bodenstruktur und Nährstoffverfügbarkeit,<br>Ertragseinbußen bei kalkanspruchsvollen Kulturen           | möglichst baldige Kalkung in der Fruchtfolge                                                  |
| С      | optimale Bedingungen für Bodenstruktur und Nährstoffverfügbarkeit                                                       | Erhaltungskalkung                                                                             |
| D      | Nährstoffverfügbarkeit kann unter bestimmten Bedingungen eingeschränkt sein, Ertragseinbußen                            | keine Kalkung                                                                                 |
| E      | Eingeschränkte Nährstoffverfügbarkeit,<br>Ertrags- und Qualitätseinbußen wahrscheinlich                                 | keine Kalkung, Einsatz versau-<br>ernder Dünger                                               |

Tabelle 12: pH-Werte der unterschiedlichen pH-Versorgungsstufen in Abhängigkeit von der Bodenart (n. Landwirtschaftskammer NRW)

| Versorgungs- | S         | IS, SU    | ssL, IU     | sL, uL, L | utL, tL, T |
|--------------|-----------|-----------|-------------|-----------|------------|
| stufe        |           | halt 2%   |             |           |            |
| Α            | < 4,6     | < 5,0     | < 5,4       | < 5,8     | < 6,0      |
| В            | 4,6 - 5,3 | 5,0 - 5,7 | 5,4 - 6,1   | 5,8 - 6,5 | 6,0 - 6,7  |
| С            | 5,4 - 5,8 | 5,8 - 6,2 | 6,2 - 6,6   | 6,6 - 7,0 | 6,8 - 7,2  |
| D            | 5,9 - 6,0 | 6,3 - 6,4 | 6,7 - 6,8   | 7,1 - 7,2 | 7,3 - 7,4  |
| E            | > 6,0     | > 6,4     | > 6,8       | > 7,2     | > 7,4      |
|              |           | Grünlaı   | nd Humusgel | halt 5 %  |            |
| Α            | < 4,1     | < 4,5     | < 4,8       | < 5,0     | < 5,2      |
| В            | 4,1 - 4,7 | 4,5 - 5,1 | 4,8 - 5,4   | 5,0 - 5,6 | 5,2 - 5,8  |
| С            | 4,8 - 5,2 | 5,2 - 5,6 | 5,5 - 5,9   | 5,7 - 6,1 | 5,9 - 6,3  |
| D            | 5,3 - 5,6 | 5,7 - 6,0 | 6,0 - 6,3   | 6,2 - 6,5 | 6,4 - 6,7  |
| E            | > 5,6     | > 6,0     | > 6,3       | > 6,5     | > 6,7      |

Tabelle 13: Kalkempfehlungen für Ackerland (n. Landwirtschaftskammer NRW)

| Bodenart   | anzustreb           | maximale<br>Kalkgabe<br>pro Jahr<br>in kg/ha CaO |             |            |          |      |
|------------|---------------------|--------------------------------------------------|-------------|------------|----------|------|
|            | über 30 %<br>Moor** |                                                  |             |            |          |      |
| S          | 5,6<br>600          | 5,2<br>500                                       | 4,8<br>400  | 4,3<br>200 | 4,1<br>0 | 1000 |
| IS, sU     | 6,0<br>900          | 5,6<br>800                                       | 5,2<br>700  | 4,8<br>300 |          | 1500 |
| ssL, IU    | 6,4<br>1100         | 6,0<br>900                                       | 5,6<br>700  | 5,1<br>400 |          | 2000 |
| sL, uL, L  | 6,8<br>1300         | 6,3<br>1100                                      | 5,8<br>900  | 5,2<br>500 |          | 3000 |
| utL, tL, T | 7,0<br>1600         | 6,5<br>1500                                      | 6,0<br>1200 | 5,4<br>600 |          | 4000 |

Die empfohlenen Kalkmengen beziehen sich auf eine dreijährige Fruchtfolge mit mittlerem Ertragsniveau bei 850 mm Jahresniederschlag.

Bodenart: S = Sand, IS = lehmiger Sand, sU = sandiger Schluff, ssL = stark sandiger Lehm, IU = lehmiger Schluff,sL = sandiger Lehm, uL = schluffiger Lehm, L = Lehm, utL = schluffiger toniger Lehm, tL = toniger Lehm, T = Ton

<sup>\*\*</sup>Die Kalkempfehlungen für Moorstandorte bezieht sich auf Hochmoor, Niedermoorstandorte weisen zumeist von Natur aus pH-Werte von 6-6,5 auf und bedürfen keiner Kalkung.

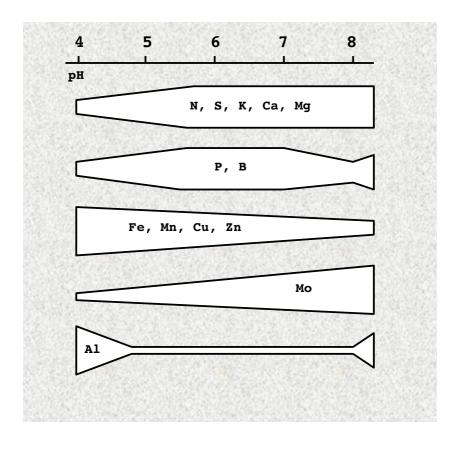
Tabelle 14: Kalkdüngungsempfehlungen für Grünland (n. Landwirtschaftskammer NRW)

| Bodenart   | anzustrebende<br>ir                    | maximale<br>Kalkgabe     |            |          |      |
|------------|----------------------------------------|--------------------------|------------|----------|------|
|            | bis 8 %<br>humusarm bis<br>stark humos | pro Jahr<br>in kg/ha CaO |            |          |      |
| S          | 5,0<br>500                             | 4,8<br>400               | 4,5<br>300 | 4,3<br>0 | 1000 |
| IS, sU     | 5,4<br>600                             | 5,2<br>500               | 5<br>300   |          | 1000 |
| ssL, IU    | 5,7<br>700                             | 5,4<br>600               | 5,1<br>400 |          | 1500 |
| sL, uL, L  | 5,9<br>800                             | 5,6<br>700               | 5,3<br>500 |          | 1500 |
| utL, tL, T | 6,1<br>900                             | 5,8<br>800               | 5,5<br>600 |          | 2000 |

<sup>\*</sup>Die empfohlenen Kalkmengen beziehen sich auf Grünland mittlerer Nutzungsintensität für 3 Jahre bei 850 mm Jahresniederschlag.

Bodenart: S = Sand, IS = lehmiger Sand, sU = sandiger Schluff, ssL = stark sandiger Lehm, IU = lehmiger Schluff,sL = sandiger Lehm, uL = schluffiger Lehm, L = Lehm, utL = schluffiger toniger Lehm, tL = toniger Lehm, T = Ton

Die Kalkmengen beziehen sich bei Acker auf 30 cm, bei Grünland auf 10 cm Bodentiefe. Auf flachgründigen bzw. tiefer bearbeiteten Böden sind entsprechende Ab- oder Zuschläge erforderlich. Die angegebenen Höchstmengen sollten nicht überschritten werden.


## 4.4.3 pH-Wert und Nährstoffverfügbarkeit

Der pH-Wert ist die Maßzahl für die Konzentration an versauernd wirkenden H+lonen und damit ein Maßstab für den Säuregrad des Bodens. Er ist logarithmisch
skaliert, d. h. fällt der pH-Wert um eine pH-Stufe, so steigt die Säurekonzentration um das Zehnfache; fällt der pH-Wert um zwei Stufen, so steigt sie um das
Hundertfache an. Zwischen Bodenreaktion (pH-Wert) und Nährstoffverfügbarkeit
besteht ein enger Zusammenhang (siehe *Abbildung 2*). Die Hauptnährstoffe wie
Stickstoff (N), Kalium (K), Phosphat (P), Schwefel (S) und Magnesium (Mg) werden mit steigendem pH-Wert besser verfügbar. Bei den Mikronährstoffen wie
Mangan (Mn), Kupfer (Cu) oder Zink (Zn) verhält es sich entgegengesetzt. Sie
werden ebenso wie die toxisch wirkenden Elemente Aluminium (Al), Cadmium
(Cd) oder Blei (Pb) bei sinkenden pH-Werten stärker pflanzenverfügbar.

<sup>\*\*</sup>Die Kalkempfehlung für Moorstandorte bezieht sich auf Hochmoor, Niedermoorstandorte weisen zumeist von Natur aus pH-Werte von 6- 6,5 auf und bedürfen keiner Kalkung.

Molybdän (Mo) nimmt unter den Spurennährstoffen eine Sonderstellung ein, da hier die Verfügbarkeit mit steigenden pH-Werten zunimmt. Bei der Einstellung des richtigen pH-Wertes muss daher ein Kompromiss gewählt werden, um die ausreichende Verfügbarkeit aller Nährstoffe zu gewährleisten.

Abbildung 2: Nährstoffverfügbarkeit in Abhängigkeit vom pH-Wert (n. Finck, 1976)



## 4.4.4 Kalkformen und -wirkung

Ein wichtiges Kriterium für die Auswahl der Kalkdünger ist ihre unterschiedliche Wirkungsgeschwindigkeit:

CaO, Calciumoxid bzw. CaO / MgO, Calciumoxid / Magnesiumoxid (Brannt-kalk und Magnesiumbranntkalk sowie Mischkalk und Magnesiummischkalk) reagieren unmittelbar mit Wasser zu Lauge und führen zu einem raschen pH-Wert-Anstieg.

CaCO<sub>3</sub>, Calciumcarbonat bzw. CaCO<sub>3</sub> / MgCO<sub>3</sub>, Calciumcarbonat / Magnesiumcarbonat (kohlensaurer Kalk, kohlensaurer Magnesiumkalk) lösen sich im säurehaltigen Bodenwasser. Bei der Berechnung der notwendigen Aufwandmengen ist zu beachten, dass MgO bzw. MgCO<sub>3</sub> eine höhere basische Wirksamkeit als CaO bzw. CaCO<sub>3</sub> aufweisen.

**Ca- + Mg-Silikate** (kieselsaure Kalke, z.B. Hütten- oder Konverterkalk) wirken bei niedrigen pH-Werten rasch. Mit steigenden pH-Werten wird die Umsetzung langsamer und nachhaltig. Die Gehalte (basische Wirksamkeiten) werden in CaO bzw. MgO angegeben.

Bezüglich der Wirkungsgeschwindigkeit gilt, dass Branntkalk und Mischkalk schneller wirken als kohlensaure und kieselsaure Kalke.

Grundsätzlich gilt daneben für die oben aufgeführten Kalke, dass die Wirkung um so rascher ist, je feiner die Produkte vermahlen sind.

Für schwere Böden sind Branntkalk, Magnesiumbranntkalk oder Mischkalk am besten geeignet, für leichte und mittlere Böden eher kohlensaurer Kalk, kohlensaurer Magnesiumkalk oder kieselsaurer Kalk.

Zum Preisvergleich der angebotenen Kalksorten sollten die Preise auf die gleiche Basis, den Neutralisationswert umgerechnet werden anhand folgender Umrechnungsfaktoren:

$$CaO \times 1,785 = CaCO_3$$
  $CaCO_3 \times 0,56 = CaO$ 

$$MgO \times 2,092 = MgCO_3$$
  $MgCO_3 \times 0,478 = MgO$ 

Basische Wirksamkeit = MgO x 1,391 = CaO --- oder MgCO<sub>3</sub>x 1,187 = CaCO<sub>3</sub>\*

\*Hierbei wird berücksichtigt, dass die tatsächliche basische Wirksamkeit von Magnesiumcarbonat und Magnesiumoxid auf Grund des Molekulargewichtes höher ist als von Calciumcarbonat und Calciumoxid. Außerdem stellt Magnesium einen weiteren Hauptnährstoff dar und wird über magnesiumhaltige Düngekalke sehr preisgünstig angeboten.

Neben den oben genannten Kalkdüngern werden kohlensaure Magnesiumkalke mit Phosphat und/oder Kali angeboten, die eine arbeitssparende Grunddüngung im Zuge der Kalkung ermöglichen.

In den Tabellen 10a und 10b im Anhang finden Sie Informationen über die Zusammensetzung wichtiger Kalkdünger sowie über die gesetzlichen Vorgaben der Kalkdünger laut Düngemittelverordnung.

## 4.4.5 Kalkausbringung

Kalk kann zeitlich flexibel das ganze Jahr über ausgebracht werden. Auf Grünland ist eine Kalkung bei Befahrbarkeit des Bodens immer möglich. Die Stoppelkalkung stellt auf Getreideflächen eine arbeitswirtschaftlich interessante und bodenschonende Variante dar, während sich bei Rüben und Mais eine Herbst- bzw. Winterkalkung anbietet. Die Vorsaat- oder Kopfkalkung mit rasch wirkenden Kalken ermöglicht es, oberflächennah auftretende pH-Wert-Absenkungen aufzufangen und den Pflanzen insbesondere in der empfindlichen Phase der Jugendentwicklung gute Wachstumsbedingungen zu bieten. Auch in Sonderkulturen (Baumschulen, Gemüsebau etc.) ist eine bedarfsgerechte Kalkversorgung wichtig und kann betriebsspezifisch durchgeführt werden.

Die Ausbringung von Düngekalken erfolgt heutzutage überwiegend durch Lohn-

unternehmen mit leistungsfähigen Großflächenstreuern. Dabei ist die Art der Ausbringung von den angebotenen Düngekalken abhängig:

Trockene Kalke werden per Silo-LKW angeliefert und mit Großflächenstreuern per Schnecke ausgebracht. Als Vorteil ist hier die gute Verteilgenauigkeit anzumerken.

Erdfeuchte Kalke werden per Kipper-LKW am Feldrand abgekippt und mittels Großflächenstreuer per Streuscheiben verteilt. Hier liegen die Vorteile insbesondere in der hohen Ausbringleistung und dem damit günstigeren Streulohn sowie im einfachen Handling und der günstigen Logistik.

Für die Ausbringung mit dem eigenen Düngerstreuer (Restflächen, Sonderkulturen, schwer befahrbare Hanglagen, Kopfkalkung in stehenden Kulturen, Vorsaatkalkung auf fertig bestellten Flächen) stehen verschiedene körnige bzw. granulierte Kalke zur Verfügung (Branntkalk körnig, Granulate aus kohlensaurem Kalk etc.), die eine gute Streuleistung ermöglichen.

Insgesamt bleibt festzuhalten, dass eine bedarfsgerechte Kalkversorgung wegen ihrer günstigen Wirkung auf Bodenstruktur, Bodenfruchtbarkeit und Pflanzenwachstum eine der sinnvollsten Düngungsmaßnahmen darstellt. Besonders im Hinblick auf die Verfügbarkeit der übrigen Nährstoffe, deren Aufwandmengen in der Düngeverordnung eingeschränkt werden, ist die Erhaltung bzw. Einstellung des optimalen pH-Wertes wichtiger denn je. Angesichts der vielfältigen Vorteile einer Kalkung ist es mit Sicherheit nicht wirtschaftlich sinnvoll, gerade bei diesem preiswerten Düngemittel Einsparungen vorzunehmen. Die regelmäßige Kalkung ist für Ertragssicherheit und Qualitätsproduktion unverzichtbar.

## 4.5 Magnesium (Mg)

#### 4.5.1 Magnesium in Boden und Pflanze

Der Magnesiumgehalt des Bodens ist abhängig vom Ausgangsgestein. Sandböden sind besonders arm an Magnesium, während Böden aus Dolomit und Basalt oder alte, tonreiche Marschböden viel Magnesium enthalten. Magnesium ist ähnlich wie Calcium im Boden leicht beweglich, sodass auf leichten Böden beachtliche Verluste an Magnesium durch Verlagerung und Auswaschung eintreten können.

Magnesium hat als zentraler Baustein des Chlorophylls zentrale Aufgaben im Stoffwechsel der Pflanze zu erfüllen, besonders bei der Eiweiß-, Kohlenhydratund Vitaminbildung. Magnesium ist in der Humanernährung in erheblichem Umfang als Mangelfaktor anzusehen. Eine Erhöhung der Mg-Gehalte, besonders in Blatt- und Kohlgemüsen, dient damit auch der menschlichen Gesundheit.

#### 4.5.2 Magnesiumbedarf

Die Düngung mit Magnesium sollte auf leichteren Standorten bei Frühjahrsdüngung am spezifischen Bedarf der angebauten Frucht ausgerichtet werden. Bei der Erhaltungs- oder Vorausdüngung zur Deckung des Fruchtfolgebedarfs sind die Standortbedingungen hinsichtlich ihrer Magnesium-Verlagerungsneigung sowie die aktuelle Bodenversorgung besonders zu berücksichtigen.

Magnesium steht bei der Nährstoffaufnahme durch die Pflanzen in Konkurrenz mit Calcium, Kalium und Ammonium. Daher muss der Magnesiumdüngung besondere Beachtung geschenkt werden

- auf Böden unter pH 5,0 (Aluminium-Magnesium-Konkurrenz),
- auf Böden über pH 7,0 (Calcium-Magnesium-Konkurrenz),
- nach Aufkalkungsmaßnahmen mit Mg-armen Kalken (z.B. Carbokalk),
- bei sehr hohen Kaligehalten im Boden (Kalium-Magnesium-Konkurrenz),

- bei ammoniumbetonter N-Düngung (Gülle, AHL, Harnstoff),
- · nach hohen Niederschlägen (Auswaschung),
- · bei niedrigen Mg-Bodenwerten,
- bei hohem Blattfruchtanteil, intensiver Grünlandnutzung und hohem Ertragsniveau (hoher Mg-Bedarf).

## 4.5.3 Magnesiumformen

In der Düngung sind vier Mg-Formen zu unterscheiden:

- Magnesiumcarbonat (MgCO<sub>3</sub>) in kohlensaurem Kalk und in verschiedenen PK- und NPK-Düngern
- Magnesiumoxid (MgO) im Magnesium-Branntkalk
- Magnesiumsilikat in Düngemitteln, die aus Hochofenschlacke gewonnen werden (z.B. Hüttenkalk und Konverterkalk feucht-körnig)
- Magnesiumsulfat (MgSO<sub>4</sub>) in Kalisulfat, Patentkali, Kieserit und Bittersalz

Während Magnesium, das in Carbonat-, Oxid- und Silikatform vorliegt, den Pflanzen erst zugänglich ist, wenn es in austauschbarer, pflanzenaufnehmbarer Form vorliegt, ist Magnesiumsulfat wasserlöslich und für die Pflanzen sehr schnell verfügbar. Für alle Mg-haltigen Kalke gilt, dass die Mg-Wirkung langsam und nachhaltig ist und mit abnehmender Mahlfeinheit zurückgeht.

Bei der Anwendung von magnesiumhaltigen Düngemitteln ist zu beachten:

- Magnesiumsulfat bleibt ohne Einfluss auf die Bodenreaktion, w\u00e4hrend Mghaltige Kalke die Bodenreaktion zur alkalischen Seite verschieben.
- Magnesiumsulfat wirkt im Gegensatz zu den Magnesiumformen in den Kalken unabhängig vom pH-Wert und Ausbringungszeitpunkt.

## 4.5.4 Empfehlungen zur Magnesiumdüngung

- Auf kalk- und magnesiumbedürftigen Böden sind Mg-haltige Kalke einzusetzen, zumal das Magnesium in diesen Düngemitteln preiswert ist und keinen Mehraufwand erfordert. Für die Ausbringung sind die Monate nach der Getreideernte am besten geeignet.
- Auf Böden ohne Kalkbedarf sollte die erforderliche Magnesiumzufuhr in Form von Magnesiumsulfat erfolgen. Auch auf Böden mit freiem Kalk, in denen sich Magnesiumcarbonat und -oxid nur sehr langsam umsetzen, bietet sich die sulfatische Düngung an. Auf auswaschungsgefährdeten Böden empfiehlt sich die Frühjahrsdüngung.
- Vom Magnesium aus magnesiumhaltigen Kalkdüngemitteln geht ebenfalls eine basische Wirkung aus, die beim MgO sogar um den Faktor 1,4 höher ist als bei CaO (siehe Seite 37). Folglich tritt in Böden mit bereits hohen Magnesiumgehalten die Wirkung des Magnesiums als Pflanzennährstoff in den Hintergrund, während die basische Wirkung des Magnesiums voll erhalten bleibt. Negative Auswirkungen bei der Düngung mit magnesiumhaltigen Kalken sind selbst auf Böden mit bereits extrem hohen Magnesiumgehalten wie Standorte mit naturgemäß hohen Magnesiumgehalten nicht zu erwarten. Magnesiumhaltige Kalkdüngemittel können deshalb auch hier im Rahmen von Kalkungsmaßnahmen erfolgreich eingesetzt werden.
- Falls auf schwach sauren Böden mit Rücksicht auf die Fruchtfolge die Erhaltung der schwach sauren Bodenreaktion erwünscht ist (z.B. in Kartoffel-Getreidefruchtfolgen), ist Magnesiumsulfat einzusetzen.
- Zur Verstärkung und Beschleunigung der Anfangswirkung sowie als Risikoausgleich bei ungünstiger Witterung und in Spitzenbedarfszeiten kann auf sauren und schwach sauren Böden die Kombination von Mg-Kalken und Mghaltigen Düngern sinnvoll sein.
- Um dem hohen Mg-Bedarf des Maises Rechnung zu tragen und sein geringes Nährstoffaneignungsvermögen zu berücksichtigen, gibt es auf Mangelstand-

orten die Möglichkeit, die Unterfußdüngung durch Kieserit "gran" zu ergänzen.

- Magnesiumdünger in sulfatischer Form enthalten in beachtlichen Mengen den Pflanzennährstoff Schwefel als willkommenen Partner.
- Die Höhe der Magnesiumdüngung richtet sich nach der Mg-Bilanz der Fruchtfolge. Dabei sollte man besonders dem hohen Mg-Bedarf der Hackfrüchte Aufmerksamkeit schenken.
- Akuter oder latenter Mg-Mangel kann über die Mg-Blattdüngung (z.B. 5 %ige Lösung mit EPSO Top) schnell behoben werden. Magnesium in den Folgejahren sollte zusätzlich über Mg-haltige Mineraldünger abgesichert werden.

Tabelle 15: Gehaltsklassen und zugehörige Versorgungsstufen für Magnesium in Acker- und Grünland, CaCl<sub>2</sub>-Methode (n. Landwirtschaftskammer NRW)

|                    | mg Mg/100 g Boden |                       |            |               |  |  |  |  |  |  |
|--------------------|-------------------|-----------------------|------------|---------------|--|--|--|--|--|--|
|                    |                   | Bodenart für:         |            |               |  |  |  |  |  |  |
| Gehaltsklasse      |                   | Acker Grünla          |            |               |  |  |  |  |  |  |
|                    | S, IS, sU         | ssL, IU, sL,<br>uL, L | utL, tL, T | alle<br>Böden |  |  |  |  |  |  |
| A (sehr niedrig)   | bis 1             | bis 2                 | bis 3      | bis 3         |  |  |  |  |  |  |
| <b>B</b> (niedrig) | 2                 | 3                     | 4 – 5      | 4 - 7         |  |  |  |  |  |  |
| C (anzustreben)    | 3 – 4             | 4 – 6                 | 6 – 9      | 8 - 12        |  |  |  |  |  |  |
| <b>D</b> (hoch)    | 5 – 7             | 7 – 10                | 10 – 14    | 13 – 18       |  |  |  |  |  |  |
| E (sehr hoch)      | ab 8              | ab 11                 | ab 15      | ab 19         |  |  |  |  |  |  |

## 4.6 Schwefel (S)

Schwefel als sechster Hauptnährstoff ist durch die Entschwefelung der Kraftwerke und schwefelärmeres Heizöl sowie Dieselkraftstoff in den letzten Jahren ins Minimum geraten. Der S-Eintrag aus der Luft beträgt in NRW nur noch etwa 10 kg/ha und Jahr.

#### 4.6.1 Schwefel im Boden

Schwefel ist im Boden hauptsächlich in der organischen Substanz gebunden (bis zu 90 % des gesamten Gehaltes). Der Rest liegt in der mineralischen Bodensubstanz überwiegend in kristalliner Form vor.

Böden, die sich auf vulkanischem Gestein (z.B. Basalt) oder schwefelreichen Sedimenten (Gips) entwickelt haben, besitzen von Haus aus einen höheren Schwefelgehalt als solche, deren Ursprung Sandstein oder glaziale Sandablagerungen sind.

Schwefel, der in der mineralischen Bodensubstanz eingebunden ist, hat für die Pflanzenernährung fast keine Bedeutung, denn die Pflanzen nehmen den Schwefel über die Wurzel nur in gelöster Form als Sulfat (SO<sub>4</sub><sup>2-</sup>) auf.

Pro Jahr werden 10 bis 20 kg/ha S des Boden-Schwefels mineralisiert. Die gleiche Menge wird wieder in die organische Substanz des Bodens eingebaut.

Das pflanzenverfügbare Sulfat verhält sich im Boden ähnlich wie Nitratstickstoff. Es wird nicht an Tonminerale gebunden und kann daher in Zeiten geringer Durchwurzelung oder bei fehlendem Pflanzenbewuchs durch Niederschläge in tiefere Bodenschichten verlagert werden.

Daher tritt Schwefelmangel besonders auf leichten, humusarmen und auswaschungsgefährdeten Böden auf. Gleichzeitig bedeutet dies, dass eine Vorratsdüngung mit Schwefel nicht möglich ist, sondern die Schwefelzufuhr zeitlich an die Aufnahme durch die Pflanzen angepasst werden muss.

Die Schwefelaufnahme der Pflanzen erfolgt in der Sulfatform (SO<sub>4</sub>). Andere Schwefelformen wie SO<sub>2</sub> aus der Luft oder Netzschwefel müssen erst in die Sulfatform überführt werden.

#### 4.6.2 Schwefel in der Pflanze

Schwefel wird von den Pflanzen etwa in gleichen Mengen wie Magnesium aufgenommen. Er zählt daher zu den Hauptnährstoffen (Anhang, Tabelle 12).

90 % des Schwefels sind an die Eiweißbausteine gebunden. S-Mangel bedeutet gleichzeitig Störung des N-Stoffwechsels. Ebenso werden bei S-Mangel der Chlorophyllaufbau und die Steuerung wichtiger Stoffwechselenzyme behindert:

- In der Pflanze sind die aufgenommenen Sulfationen zum Teil im Zellsaft, überwiegend aber in eingebauter Form vorhanden.
- Zusammen mit Stickstoff dient Schwefel als essentieller Baustein beim Aufbau der Aminosäuren und damit von Eiweiß.
- Schwefel ist dadurch am Aufbau von Kohlenhydraten beteiligt, beeinflusst damit die Synthese von Stärke, Zucker und Geschmacksstoffen.
- Schwefel ist bei der Bildung von wichtigen Vitaminen unersetzlich (Biotin, Thiamin, Vitamin B).
- Bei Kreuzblütlern (Raps, Senf) und Liliengewächsen (Zwiebeln, Lauch, Knoblauch) wird Schwefel zur Bildung sekundärer Inhaltsstoffe, z.B. Senf- und Lauchöl, benötigt.
- Schwefel ist am Aufbau wachstumsfördernder Enzyme beteiligt.

Mit diesen wichtigen Funktionen trägt Schwefel maßgeblich zur Sicherung der Erträge und der Qualität des Ernteguts bei.

Tabelle 16: S-Versorgung und Pflanzenqualität (Wirkung der S-Düngung in Mangelsituationen)

| Auswirkungen auf:                  | in Form von:                                                                                      |
|------------------------------------|---------------------------------------------------------------------------------------------------|
| 1. N-Stoffwechsel                  |                                                                                                   |
| Eiweißqualität allgemein           | Höhere biologische Wertigkeit<br>(S-haltige Aminosäuren)                                          |
| Backqualität (z.B. Weizen)         | Proteingehalt und Kleberqualität verbessert                                                       |
| Brauqualität (z.B. Gerste)         | Enzymgehalt und -aktivität erhöht                                                                 |
| Futter(Nahrungs)-qualität          | Verbesserte N₂-Fixierungsleistung                                                                 |
| Leguminosen                        | mehr Proteinertrag mit höherer biol.<br>Wertigkeit                                                |
| Futterqualität                     | Verminderung des NO₃-Gehaltes                                                                     |
| 2. sekundäre Pflanzeninhaltsstoffe |                                                                                                   |
| Gemüse, Gewürzpflanzen             | höhere Senfölgehalte (Geschmack!)                                                                 |
| • Ölraps                           | Qualitätsabfall durch Anstieg der<br>Glucosinulatgehalte bei 00-Typen we-<br>niger wahrscheinlich |

Bei durchschnittlichen Erträgen unterschiedlicher Kulturen werden mit jeweils 10 kg N auch 1 bis 4 kg S vom Feld abgefahren. In der Regel rechnet man in der Biomasse mit einem anzustrebenden N : S - Verhältnis von durchschnittlich 10 : 1. S-Mangel wird häufig als N-Mangel fehlinterpretiert. Eine zusätzliche N-Gabe verstärkt in diesem Fall den S-Mangel.

Mit der Wurzel aufgenommener Schwefel wird in der Pflanze vorwiegend in jüngere Pflanzenteile transportiert und dort fest eingebaut. Es erfolgt später kaum eine Umverlagerung in der Pflanze, wie dies mit anderen Nährstoffen (K, N, P, Mg) in gewissen Grenzen möglich ist. Es ist also dafür zu sorgen, dass den Kulturen während der gesamten Bedarfsperiode ausreichende Schwefelmengen zur Verfügung stehen. Die Aufnahme von Schwefel verläuft zeitlich ähnlich wie bei Stickstoff. Die Schwefeldüngung sollte daher frühzeitig zur jeweiligen Kultur er-

folgen. Damit wird latenter Schwefelmangel bzw. eine Unterversorgung zu einer Zeit vermieden, in welcher die Mineralisierung im kalten Boden unzureichend ist. Gleichzeitig wird die Ausnutzung des gedüngten Stickstoffs gesichert.

Tabelle 17: Empfohlene S-Düngemenge und Düngezeitpunkt (Bodendüngung) (n. Landwirtschaftskammer NRW)

| Fruchtart           | Düngemenge<br>in kg S/ha | Düngezeitpunkt                        |
|---------------------|--------------------------|---------------------------------------|
| Getreide            | 10-20                    | Vegetationsbeginn bis 1-Knotenstadium |
| Winterraps          | 20-40                    | im Frühjahr                           |
| Intensives Grünland | 10-25                    | Zum 1. Schnitt                        |
| Intensives Grünland | 10-15                    | Zum 2. und 3. Schnitt                 |
| Kohl                | 30-50                    | zur Pflanzung                         |
| sonstiges Gemüse    | 20-40                    | zur Saat bzw. zur Pflanzung           |

#### 4.6.3 Schwefelformen

Ammoniumsulfate

Für die Düngung sind folgende Schwefelformen relevant:

| (mit und ohne Nitrat) | ENTEC 26, Alzon flüssig S        |
|-----------------------|----------------------------------|
| Kaliumsulfate         | Kaliumsulfat "gran.", Patentkali |

Magnesiumsulfate
 Kieserit, EPSO Top, Optimag<sup>Plus</sup>

Calciumsulfate YARA Sulfan

Calciumsulfit Branntkalk mit Schwefel 80/2

 Icablese Magnesiumkelk mit Schwefel 80/2

kohlens. Magnesiumkalk mit Schwefel 80/2

ASS SSA Ureas Piamon 33 S Piasan 24 S

Viele Mineraldünger enthalten Schwefel (s. Anhang, Tabelle 12).

Gülle enthält mit 0,1-0,5 kg/m³ relativ wenig Schwefel, der größtenteils organisch gebunden ist. Schwefel aus Gülle wie auch aus anderen organischen Quellen wird parallel zum Stickstoff erst durch Mineralisation pflanzenverfügbar. Nach bisherigen Erfahrungen sollten die anrechenbaren Mengen nicht überschätzt werden.

# Der neue Schätzrahmen für die Notwendigkeit einer S-Düngung

|                                                                                                                         | Control of the Section of the Control of the Contro | nit Punktzahl             |                       | -   | effend   |   | 111111 | GIII |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|-----|----------|---|--------|------|
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | SCHLAG                | 1   | 2        | 3 | 4      | Ŀ    |
| STANDORTEIGENSCHAFTEN                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       |     |          |   |        | Т    |
| Bodenart                                                                                                                | Sandiger Boden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lehmiger                  | Toniger               | 1 - |          |   |        |      |
| ) z. B. Sand, lehmiger oder schluffiger Sand                                                                            | Schotterboden <sup>®</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Boden 2                   | Boden®                | 3   |          |   |        |      |
| 2) z. B. sandiger, sandig-toniger oder schluffiger Lehm<br>3) z. B. Ton, sandiger oder lehmiger Ton                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                         | 5                     |     |          |   |        |      |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                         | 3                     | +   | _        |   |        | +    |
| Humusgehalt                                                                                                             | arm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mittel                    | reich                 | _   |          |   |        |      |
|                                                                                                                         | < 2 % Humus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-4% Humus                | > 4 % Humus           | 3   |          |   |        |      |
|                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                         | 1                     |     |          |   |        |      |
| Verfügbarer Wurzelraum                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       | +   | _        |   | _      | +    |
| Krume + durchwurzeiter Raum)                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | I                     | ١.  |          |   |        |      |
| ,                                                                                                                       | Flachgründig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tiefgründig               |                       | 4   |          |   |        |      |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       |     |          |   |        |      |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       | +   | -        | - | -      | +    |
| Strukturschäden<br>Verschlämmung, Boden-                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Otalia maria              | NI - L                | ١.  |          |   |        |      |
| verdichtung, Pflugsohle)                                                                                                | Vorhanden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stellenweise<br>vorhanden | Nicht<br>vorhanden    | 4   |          |   |        |      |
| ordionang, i nagoonie,                                                                                                  | To managem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | II I                  | 1   |          |   |        |      |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                         | 4                     | +   |          | - | -      | +    |
| N <sub>min</sub> -Gehalt zu Vegetations-                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Α                     |     |          |   |        |      |
| beginn im Vergleich                                                                                                     | Unterdurch-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Durch-                    | Überdurch-            | 3   |          |   |        |      |
| zum langjährigen Mittelwert                                                                                             | schnittlich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | schnittlich               | schnittlich           |     |          |   |        |      |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                         | 5                     | +   | —        |   |        | -    |
| WITTERUNG                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       |     |          |   |        |      |
| Niederschläge (Oktober-März)                                                                                            | Überdurch-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Durch-                    | Unterdurch-           | 3   |          |   |        |      |
| m Vergleich zum langjährigen                                                                                            | schnittlich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | schnittlich               | schnittlich           | >   |          |   |        |      |
| Mittelwert                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                         | 5                     |     |          |   |        | L    |
| BEWIRTSCHAFTUNG                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       |     |          |   |        |      |
| Schwefelzehrende Kulturen                                                                                               | Anbau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Anbau                     | Anbau mind.           | 3   |          |   |        |      |
| n der Fruchtfolge                                                                                                       | jedes 3. Jahr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | jedes 4. Jahr             | jedes 5. Jahr         | >   |          |   |        |      |
| Raps, Kohlarten, Leguminosen)                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                         | 4                     |     |          |   |        |      |
| n diesem Jahr                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       |     |          |   |        | Т    |
| angebaute Kultur                                                                                                        | Raps, Kohl,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Andere                    |                       | 1   |          |   |        |      |
|                                                                                                                         | Leguminosen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kulturen                  |                       | '   |          |   |        |      |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                         | ĺ                     |     | 1        |   |        |      |
| Schwefelmangel bereits                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       |     |          |   |        | Т    |
| aufgetreten (Ertragseinbußen,                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nein oder                 |                       | 3   |          |   |        |      |
| Blattanalyse, Mangelsymptome)                                                                                           | Ja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | unbekannt                 |                       | >   |          |   |        |      |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                         | i                     |     |          |   |        | 1    |
| Ertragsniveau (dt/ha)                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         |                       |     |          |   |        | T    |
| Raps > 35" 25-352 < 253                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       | 3   |          |   |        |      |
| Getreide > 70 <sup>1)</sup> 50-70 <sup>2)</sup> < 50 <sup>3)</sup>                                                      | Hoch <sup>1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mittel <sup>2)</sup>      | Niedrig <sup>3)</sup> | >   |          |   |        |      |
|                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                         | 4                     |     |          |   |        |      |
| Zwischenfruchtanbau                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       | T   |          |   |        | Π    |
| m letzten Herbst/Winter                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       | 2   |          |   |        |      |
|                                                                                                                         | Nein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ja                        |                       | 2   |          |   |        |      |
|                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                         | i                     |     |          |   |        |      |
| DÜNGUNG                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       | T   |          |   |        | Г    |
| Einsatz organischer Dünger                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       | 1   |          |   |        |      |
| aus Tierhaltung                                                                                                         | 0 GV/ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ≤ 1,5 GV/ha               | > 1,5 GV/ha           | 1   |          |   |        |      |
| keine Gründüngung)                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | <b> </b> 3            |     |          |   |        |      |
| n den letzten 3 Jahren Einsatz                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       | +   | $\vdash$ |   |        | +    |
| nennenswerter Schwefel-Mengen                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | l                     |     |          |   |        |      |
| aus Mineraldüngern (z. B. ASS,                                                                                          | Nein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ja                        |                       |     |          |   |        |      |
| Nitrophoska 13+9+16 (+4+7),                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       | 1   |          |   |        |      |
| 10.0.0/.2.4\ Cunomboomboomboo                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                         | !                     |     |          |   |        |      |
| 0+8+8 (+3+4), Superphosphat,                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       |     |          |   |        | 1    |
| 0+8+8 (+3+4), Superphosphat,<br>(aliumsulfat)                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                       |     |          |   |        | L    |
| u-8+6 (+3+4), Superphosphat,<br>(aliumsulfat)<br>3-32 Punkte: Wahrscheinlichkeit vo<br>3-40 Punkte: Bestände (besonders | n Schwefelmangel h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | och, Düngung mit /        | \SS notwendig         | 34  |          | - |        | -    |

## 4.7 Natrium (Na)

#### 4.7.1 Natrium im Pflanzenbau

Natrium ist ein für verschiedene Pflanzen wichtiges Element und beeinflusst den Wasserhaushalt günstig, besonders bei ungenügender Kali-Versorgung. Von den natriumliebenden Pflanzen, z.B. Rüben, Sellerie, Spinat, Gerste und Feldgras, wird Natrium gut aufgenommen und führt auch bei guter Kaliversorgung zu positiver Ertragsbeeinflussung. So zeigen Zuckerrüben bei mangelnder Natriumversorgung schneller Welkeerscheinungen und geringere Erträge. Natriumchlorid (NaCl) kann darüber hinaus den Nitratgehalt im Grünlandaufwuchs und auch in Spinat und Blattsalat senken.

#### 4.7.2 Natrium in der Tierernährung

Im Stoffwechsel des Tieres ist Natrium wichtig für die Regulierung des Zelldruckes, des Wasserhaushaltes und der Speichelsekretion. Ebenfalls werden Muskel- und Nervenfunktionen beeinflusst.

#### Mangelerscheinungen äußern sich wie folgt:

- Lecksucht
- Appetitmangel
- Nervosität
- Muskelzittern
- struppiges Fell
- Leistungsminderung

Bei Natriummangel ist die Magnesiumresorption im Tier und die Bildung von Sexualhormonen (Fruchtbarkeit) behindert.

Wegen der durchweg niedrigen Na-Gehalte im Grünlandaufwuchs sollte Natrium

bei der Grünlanddüngung berücksichtigt werden, denn mit natriumhaltigen Düngemitteln lässt sich der Gehalt des Aufwuchses auf die von der Tierernährung erwünschten Gehalte von 0,2 % in der TM sicherstellen. Die Beifütterung von Viehsalz und Lecksteinen reicht vor allem bei Milchkühen nur selten aus, da der Tagesbedarf hier bei rund 2,5 g NaCl je kg Milch liegt. Hohe Viehsalzgaben führen häufig zu erhöhtem Durchfall und Wasserverbrauch.

Entsprechend ist eine kontinuierliche und bedarfsdeckende Versorgung aller Milchkühe mit Natrium nur über die Zufuhr von Düngemitteln mit hohen Na-Gehalten zu erreichen. Die Na-Gehalte lassen sich besonders in Weidelgras und Kleenarben leicht anheben. Die Schmackhaftigkeit und Aufnahme des Grundfutters wird dadurch wesentlich verbessert. Dabei wirkt Natrium im Tierkörper unabhängig von der Grünlandnutzung (Weide, Heu oder Silage).

Die Natriumdüngung auf Grünland wird in der Regel über Magnesia-Kainit im zeitigen Frühjahr durchgeführt. Eine Ausbringung ist auch auf gefrorenem Boden möglich.

## 4.8 Spurennährstoffe

Spurennährstoffe sind Nährstoffe, die im Vergleich zu den Hauptnährstoffen von den Pflanzen nur in geringen Mengen benötigt werden, aber trotzdem von gleich großer Bedeutung sind.

Der Spurennährstoffgehalt der Böden ist stark abhängig vom geologischen Ausgangsmaterial. Akuter Spurennährstoffmangel bei Kulturpflanzen ist allerdings viel häufiger auf unzureichende Verfügbarkeit als auf absolut niedrige Bodengehalte zurückzuführen. Ausnahmen hierbei sind Moor- und Sandböden.

Die Verfügbarkeit im Boden hängt im Wesentlichen vom pH-Wert ab (vgl. *Abbildung 2*, S. 35). Bei steigendem pH-Wert sinkt die Verfügbarkeit von Mn, Fe, Zn und B, während die Verfügbarkeit von Mo zunimmt. Latenter oder vorübergehen-

der Mangel tritt vorrangig in Trocken- und Kälteperioden auf. Dieses Phänomen ist besonders bei Mangan zu beobachten.

Die gezielte Düngung mit Spurennährstoffen gewinnt zunehmend Bedeutung bei höheren Erträgen und damit auch höheren Entzügen. Zusätzlich muss beim Einsatz von hoch konzentrierten Mineraldüngern ohne Nebenbestandteile die Spurennährstoffzufuhr berücksichtigt werden. Auch der Wandel beim Einsatz von Pflanzenschutzmitteln kann eine zusätzliche Düngung erforderlich machen (z.B. Cu-Zufuhr nach Absetzen von Cu-haltigen Pflanzenschutzmitteln).

Im Grünland hat die Spurennährstoffdüngung besondere Bedeutung für die Futterqualität (besonders Cu). Bezüglich des Spurennährstoffs Selen ist Deutschland ein Mangelgebiet. Selenmangel tritt vor allem bei Weidehaltung auf und führt bei Milchvieh zu Fruchtbarkeitsstörungen, hoher Kälbersterblichkeit und verstärktem Auftreten von Mastitis. Eine Düngung mit Yara Sulfan mit Selen kann die Grundversorgung mit Selen in den Tierbeständen absichern.

Zur Sicherung der Spurennährstoffversorgung erfolgt entweder eine Düngung mit Spurennährstoffdüngern, oder man bringt Mineraldünger mit Spurennährstoffen als Nebenbestandteilen aus, z.B. Thomaskali, Thomaskalk, Konverterkalk, Hüttenkalk (enthalten Mn, Fe, Cu, Zn, B, Mo) oder Chilesalpeter (enthält B). Bei akutem Mangel muss die Pflanze direkt über das Blatt mit Spurennährstoffen gedüngt werden.

Ausführliche Informationen zu Mikronährstoffen sind einer BAD-Broschüre zu entnehmen, die der LAD kostenfrei bereithält.

## <u>Getreide</u>

Besonders Hafer reagiert empfindlich auf Spurennährstoffmangel. So führt Manganmangel zur Dörrfleckenkrankheit. Sichtbar wird dieser Mangel dadurch, dass die Blätter scharf abbrechen und dann am Blattgrund vertrocknen. Bereist vor Winter kann Mangan zur Wintergerste auf entsprechenden Standorten in Mangel geraten.

Kupfermangel bei Hafer kann zur "Heidemoorkrankheit" bzw. "Urbarmachungs-krankheit" führen. Symptome sind Aufhellen der Blätter von den Rändern und Spitzen her, Blattspitzen hängen oft korkenzieherartig herab. Der Bestand erhält einen weißen Schimmer (Spitzendürre/Weißährigkeit). Die Bestandsentwicklung ist ungleichmäßig, es kommt zu Nachschossern und Ährensterilität (taube Rispen von Hafer). Zunehmend gerät auch Zink in Mangel, am Getreide sichtbar in Form von zwergigem Wuchs, aufgehellten jüngeren Blättern und mangelnder Bestockung.

#### Zuckerrüben

Bormangel verursacht die Herz- und Trockenfäule: Die Herzblätter werden braun und schwarz. Später beginnt der Rübenkopf zu faulen (Trockenfäule), sodass der Rübenkörper allmählich von innen her hohl wird.

#### Raps

Bormangel führt hier zu Wachstumsstörungen am meristimatischen Gewebe, oft am Wurzelhals. Später treten defekte Kopf- und Schotenausbildung auf.

#### Kartoffeln

Vielfältige Qualitätskriterien werden durch Spurennährstoffe beeinflusst. So führt Bormangel zu Losschaligkeit und verstärkt die Eisenfleckigkeit. Mangan reduziert den Schorfbefall.

#### Obstbau

Spurennährstoffmangel ist im Obstbau von erheblicher Bedeutung. So sind Feund Mn-Mangelerscheinungen besonders auf kalkreichen und schweren Böden weit verbreitet. Besonders anfällig sind Apfelsorten wie "Cox Orange" und "Golden Delicious" sowie Birnen auf Quitte, Pflaumen und Pfirsiche.

Zu hohe pH-Werte und Phosphatgehalte, niedrige Temperaturen und Trockenheit verursachen Zn-Mangel, vor allem bei Apfel, Birne und Kirsche.

Apfel, Birne, Pflaume, Pfirsich und Kirsche sind durch B-Mangel gefährdet.

## Gemüsebau

Über den Bedarf der einzelnen Gemüsearten liegen nur wenige exakte Untersuchungen vor. Deshalb erhält die Spurennährstoffversorgung den Charakter einer Risikovorsorge.

Zu beachten ist der hohe Mo-Bedarf von Blumenkohl. Zur Bekämpfung des Mo-Mangels genügt in der Regel eine Aufkalkung auf den richtigen pH-Wert. Kohlgemüse, Rettich, Sellerie, Tomaten, Ruccola und Möhren besitzen einen hohen Bedarf bzw. sind anfällig gegenüber B-Mangel.

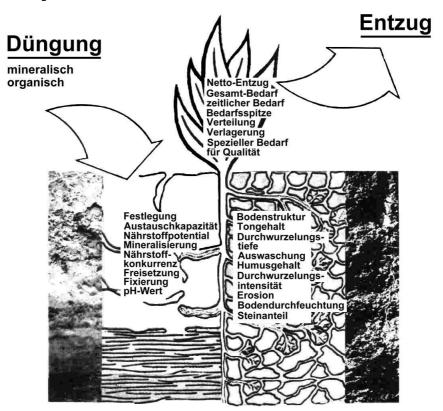
## Weinbau

Besonders unter staunassen Bedingungen kann Fe-Chlorose auftreten. Abhilfe ist mit Fe-Chelaten möglich.

Tabelle 18: Wichtige Spurennährstoffe und ihre Mangelursachen

| Ernteentzug/ha | Mangel ha         | äufig bei                 | Mangel verstärkt durch            |  |  |
|----------------|-------------------|---------------------------|-----------------------------------|--|--|
|                | Pflanzenart       | Böden*                    |                                   |  |  |
| Eisen (Fe)     | Obstarten         |                           |                                   |  |  |
| bis 1,5 kg     | Wein              | pH > 6,5                  | Überzogene Kal-<br>kung           |  |  |
|                | Zierpflanzen      |                           | Rung                              |  |  |
| Mangan (Mn)    | Hafer             |                           |                                   |  |  |
| bis 1 kg       | Rüben             |                           | überzogene Kal-<br>kung           |  |  |
|                | Kartoffeln        | pH > 6                    | Trockenheit                       |  |  |
|                | Körnerleguminosen |                           | gute Durchlüftung                 |  |  |
|                | Obstarten         |                           | gute Burernattung                 |  |  |
| Zink (Zn)      | Mais              |                           |                                   |  |  |
| 100 – 300 g    | Getreide          |                           | überzogene Kal-<br>kung           |  |  |
|                | Obstarten         | starten pH > 6,5 oder < 5 |                                   |  |  |
|                | Wein              |                           |                                   |  |  |
|                | Hopfen            |                           |                                   |  |  |
| Kupfer (Cu)    | Hafer             |                           |                                   |  |  |
| 50 - 100 g     | Weizen und Gerste | pH > 6 und viel           | Trockenheit                       |  |  |
|                | Zierpflanzen      | organische Sub-<br>stanz  |                                   |  |  |
|                | Gemüsearten       | ota                       |                                   |  |  |
|                | Waldbäume         |                           |                                   |  |  |
| Bor (B)        | Raps              |                           |                                   |  |  |
| 100 – 400 g    | Rüben             |                           | Trockenheit                       |  |  |
|                | Luzerne           | pH > 7                    | überzogene Kal-                   |  |  |
|                | Tomaten und Kohl  |                           | kung                              |  |  |
|                | Obstarten         |                           |                                   |  |  |
|                | Wein              |                           |                                   |  |  |
| Molybdän (Mo)  | Leguminosen       |                           | 1                                 |  |  |
| wenige g       | Blumenkohl        | pH < 6                    | physiologisch sau-<br>re N-Dünger |  |  |
|                | Kruziferen        |                           |                                   |  |  |

<sup>\*</sup> Auf leichten Böden eher als auf mittleren und schweren Böden


## 5. Düngeverordnung (DüV)

Die wesentliche Inhalte des Bundesratsbeschlusses zur Düngeverordnung vom Nov. 2005 sind nachfolgend aufgeführt. (Auszug aus "Ratgeber Pflanzenbau und Pflanzenschutz, Ausgabe 2006; Landwirtschaftskammer NRW).

- 1. Vor der Aufbringung wesentlicher Nährstoffmengen sind die im Boden verfügbaren Nährstoffmengen vom Betrieb zu ermitteln; für Stickstoff (außer auf Dauergrünland) jährlich für jeden Schlag oder jede Bewirtschaftungseinheit durch Bodenuntersuchung oder Richt-/Schätzwerte; für Phosphat durch Bodenuntersuchung alle 6 Jahre für jeden Schlag ab 1 ha.
- 2. Dünger mit wesentlichen Gehalten an Stickstoff und Phosphat dürfen nicht aufgebracht werden, wenn der Boden **überschwemmt**, wassergesättigt, gefroren oder durchgängig höher als fünf Zentimeter mit Schnee bedeckt ist.
- 3. Beim Ausbringen von Düngern mit wesentlichen Gehalten an Stickstoff und Phosphat ist ein direkter Eintrag von Nährstoffen in oberirdische Gewässer durch Einhaltung eines Abstands von mindestens drei Metern zwischen dem Rand der durch die Arbeitsbreite bestimmten Ausbringungsfläche und der Böschungsoberkante des jeweiligen oberirdischen Gewässers zu vermeiden und es muss dafür gesorgt werden, dass kein Abschwemmen in oberirdische Gewässer erfolgt. Der Mindestabstand gilt nicht für Geräte, die eine genauere Platzierung erlauben.
- 4. Auf **stark geneigten Ackerflächen** (Flächen, die innerhalb eines Abstandes von 20 Metern landeinwärts zur Böschungsoberkante eines Gewässers eine Hangneigung von durchschnittlich mehr als 10 % aufweisen) darf die Ausbringung von Düngern mit wesentlichem Stickstoff- oder Phosphatgehalt innerhalb der ersten 10m zum Gewässer nur erfolgen, wenn sie direkt in den Boden eingebracht werden. Auf der verbleiben Fläche (10-20 m) müssen die Dünger auf unbestelltem Ackerland sofort eingearbeitet werden. Auf bestellten Ackerflächen ist die Düngung
- a) bei Reihenkulturen nur bei entwickelter Untersaat oder bei sofortiger Einarbeitung,
- b) bei sonstigen Kulturen bei hinreichender Bestandsentwicklung oder
- c) nach Anwendung von Mulch- oder Direktsaatverfahren zulässig.
- 5. Geräte zur Düngerausbringung müssen den allgemein anerkannten Regeln der Technik entsprechen. Bestimmte Geräte sind ab 1. Januar 2010 verboten.
- 6. Organische oder organisch-mineralischen Düngemittel einschließlich Wirtschaftsdünger dürfen nur ausgebracht werden, wenn deren Gehalte an Gesamtstickstoff und Phosphat, im Fall von Gülle, Jauche, sonstigen flüssigen organischen Düngemitteln oder Geflügelkot zusätzlich an Ammoniumstickstoff bekannt sind (aus Deklarationen oder Untersuchungen bzw. Richtwerte).
- 7. Gülle, Jauche, sonstige flüssige organische oder organisch-mineralische Dünger mit wesentlichen Gehalten an verfügbarem Stickstoff oder Geflügelkot müssen auf unbestelltem Ackerland unverzüglich eingearbeitet werden.
- 8. Bei der Ausbringung von Wirtschaftsdüngern tierischer Herkunft ist im Betriebsdurchschnitt die N-Obergrenze von 170 kg/ha zu beachten. Es ist beabsichtigt, auf Antrag für Grünland, Feldgras und im Gemüsebau bis zu 230 kg/ha N zuzulassen. Dafür muss das Grünland mit mindestens 4 Schnitten (oder 3 Schnitten + Weide) genutzt werden, es darf ausschließlich verlustarme Ausbringtechnik eingesetzt werden und der N-Überhang im Nährstoffvergleich muss die vorgegebenen Grenzen einhalten. Der Antrag wäre alle 4 Jahre zu stellen. Ob eine solche Regelung kommt, war bei Redaktionsschluss noch nicht absehbar.
- Sperrfrist für Gülle und Geflügelkot und sonst. Düngemittel mit wesentlichem Gehalt an verfügbarem Stickstoff: auf Ackerland vom 1. November bis 31. Januar, auf Grünland vom 15. November bis 31. Januar.
- 10. Jährlich ist ein Nährstoffvergleich für Stickstoff und Phosphat zu erstellen. Dieser ist der

zuständigen Behörde auf Anforderung vorzulegen.

- 11. Auf Ackerland dürfen nach der Ernte der letzten Hauptfrucht Jauche, Gülle und weitere organische Dünger nur eingesetzt werden, wenn im gleichen Jahr noch eine Folgekultur (einschließlich Zwischenfrucht) angebaut wird oder als Ausgleichsdüngung zum nicht abgefahrenen Getreidestroh. Es dürfen höchstens 40 kg Ammonium-N oder 80 kg Gesamt-N je ha ausgebracht werden.
- 12. Im Nährstoffvergleich darf im 3-Jahresmittel folgender **N-Überhang** nicht überschritten werden:
- . in den 2006, 2007 und 2008 begonnenen Düngejahren: 90 kg/ha und Jahr,
- . in den 2007, 2008 und 2009 begonnenen Düngejahren: 80 kg/ha und Jahr,
- . in den 2008, 2009 und 2010 begonnenen Düngejahren: 70 kg/ha und Jahr
- . in den 2009, 2010 und 2011 und später begonnenen Düngejahren: 60 kg/ha und Jahr.
- 13. Der **P-Überhang** darf im Mittel der letzten 6 Jahre nicht über 20 kg  $P_2O_5$  je ha und Jahr liegen, es sein denn die Bodenuntersuchung weist im gewogenen Betriebsmittel weniger als 20 mg  $P_2O_5/100$  g Boden (CAL-Methode), 25 mg  $P_2O_5/100$  g Boden (DL- Methode) oder 3,6 mg P je 100 g Boden (EUF-Methode) aus.
- 14. Aufzuzeichnen sind die Nährstoffgehalte der Böden und Düngemittel einschließlich der verwendeten Verfahren, die Ausgangsdaten und die Ergebnisse der Nährstoffvergleiche. Die Aufzeichnungen müssen 7 Jahre aufbewahrt werden.
- 15. Verstöße gegen diese Vorschriften der Düngeverordnung können als **Ordnungswidrigkeiten** mit einer Verwarnung oder mit einem Bußgeld geahndet werden und ziehen ggf. Prämienkürzungen im Rahmen von **Cross Compliance** nach sich.



#### 6. Anhang

Tabelle 1: Nährstoffentzüge (kg/ha) von Ackerkulturen (Erntegut/Erntereste) bei verschiedener Ertragserwartung (n. Landwirtschaftskammer NRW)

|                   | Ertrag | Erntegut (z.B. Korn, Knolle,<br>Rübe) |        |     | Ertrag | 1     | est (z.B.<br>Bla | Stroh, I         | -   |     |
|-------------------|--------|---------------------------------------|--------|-----|--------|-------|------------------|------------------|-----|-----|
|                   | dt/ha  | P <sub>2</sub> O <sub>5</sub>         | $K_2O$ | MgO | CaO    | dt/ha | $P_2O_5$         | K <sub>2</sub> O | MgO | CaO |
| Weizen            | 80     | 64                                    | 48     | 16  | 8      | 72    | 22               | 101              | 14  | 32  |
| WCIZCII           | 100    | 80                                    | 60     | 20  | 10     | 80    | 24               | 113              | 16  | 36  |
| Gerste            | 60     | 48                                    | 36     | 12  | 6      | 60    | 18               | 102              | 12  | 27  |
| GOTOLO            | 80     | 64                                    | 48     | 16  | 8      | 72    | 22               | 123              | 14  | 33  |
| Roggen            | 70     | 56                                    | 42     | 11  | 7      | 74    | 22               | 148              | 15  | 33  |
|                   | 90     | 72                                    | 54     | 14  | 9      | 85    | 26               | 171              | 17  | 38  |
| Triticale         | 70     | 56                                    | 42     | 14  | 7      | 74    | 22               | 126              | 15  | 33  |
|                   | 90     | 72                                    | 54     | 18  | 9      | 85    | 26               | 145              | 17  | 38  |
| Hafer             | 60     | 48                                    | 36     | 12  | 6      | 66    | 20               | 172              | 13  | 30  |
| i idioi           | 80     | 64                                    | 48     | 16  | 8      | 80    | 24               | 210              | 16  | 36  |
| Körner-           | 80     | 64                                    | 40     | 20  | 20     | 105   | 32               | 211              | 32  | 63  |
| mais              | 100    | 80                                    | 50     | 25  | 25     | 129   | 39               | 257              | 39  | 77  |
| ССМ-              | 120    | 62                                    | 55     | 22  | 24     | 131   | 28               | 183              | 28  | 55  |
| Mais              | 145    | 75                                    | 67     | 26  | 29     | 155   | 33               | 220              | 33  | 66  |
| Silomais          | 400    | 70                                    | 192    | 46  | 69     |       |                  |                  |     |     |
| Gilomaio          | 550    | 97                                    | 264    | 63  | 95     |       |                  |                  |     |     |
| Acker-            | 40     | 48                                    | 56     | 12  | 6      | 52    | 16               | 105              | 10  | 55  |
| bohne             | 50     | 60                                    | 70     | 15  | 8      | 60    | 18               | 122              | 12  | 64  |
| Erbse             | 40     | 44                                    | 56     | 12  | 6      | 48    | 14               | 101              | 10  | 50  |
| LIDSC             | 50     | 55                                    | 70     | 15  | 7      | 55    | 17               | 117              | 11  | 58  |
| Körner-           | 35     | 63                                    | 35     | 18  | 22     | 58    | 29               | 174              | 17  | 107 |
| raps              | 45     | 81                                    | 45     | 23  | 28     | 70    | 35               | 211              | 21  | 129 |
| Zucker-           | 550    | 55                                    | 138    | 33  | 37     | 379   | 42               | 189              | 30  | 91  |
| rübe              | 650    | 65                                    | 163    | 39  | 44     | 394   | 43               | 197              | 32  | 95  |
| Futter-<br>rübe   | 800    | 64                                    | 380    | 36  | 33     | 344   | 24               | 144              | 34  | 86  |
| (Mittel-<br>rübe) | 1.000  | 80                                    | 475    | 45  | 41     | 380   | 26               | 159              | 38  | 94  |
| IZ a al a ZZ a    | 400    | 56                                    | 240    | 28  | 12     | 128   | 16               | 119              | 30  | 89  |
| Kartoffel         | 500    | 70                                    | 300    | 35  | 15     | 140   | 17               | 128              | 32  | 96  |

Der Entzug der Gesamtpflanze berechnet sich aus der Summe der Nährstoffmenge im Erntegut und Ernterest. Düngergaben in dieser Höhe sind - über die Fruchtfolge gesehen - aber nur dann erforderlich, wenn die Erntereste (z.B. Getreidestroh) abgefahren werden. Verbleiben die Erntereste jedoch auf dem Feld, werden diese Nährstoffrücklieferungen entsprechend des Ertragsniveaus bei der Düngeempfehlung nach DungPro (Landwirtschaftskammer/LUFA) der Folgefrucht gutgeschrieben. Wird von der ursprünglichen Planung abgewichen (z.B. bei Strohverkauf oder Änderung der Fruchtfolge), gibt diese Tabelle eine Orientierung zur Anrechnung der Erntereste.

Tabelle 2: Durchschnittliche Nährstoffentzüge bei Freilandgemüse und einigen Sonderkulturen in kg/a (x 100 = kg/ha) bei gut versorgten Böden

| Gemüseart      | N    | $P_2O_5$ | K <sub>2</sub> O | CaO  | MgO  |
|----------------|------|----------|------------------|------|------|
| Blumenkohl     | 2,50 | 0,70     | 3,50             | 1,50 | 0,90 |
| Buschbohnen    | 1,40 | 0,60     | 2,00             | 0,75 | 0,60 |
| Endivien       | 1,20 | 0,40     | 1,50             | 0,45 | 0,50 |
| Gurken         | 1,50 | 0,60     | 2,00             | 0,30 | 0,80 |
| Kopfkohl       | 3,00 | 0,90     | 4,00             | 4,00 | 0,90 |
| Kohlrabi       | 1,80 | 0,50     | 2,20             | 0,95 | 0,60 |
| Kopfsalat      | 1,20 | 0,40     | 1,50             | 0,35 | 0,50 |
| Möhren         | 1,00 | 0,90     | 2,50             | 1,00 | 0,80 |
| Porree         | 1,80 | 0,50     | 2,30             | 1,00 | 0,60 |
| Rettich        | 1,80 | 0,50     | 2,30             | 0,60 | 0,60 |
| Rosenkohl      | 3,00 | 0,90     | 4,00             | 2,00 | 0,90 |
| Rote Rübe      | 1,20 | 0,50     | 2,00             | 1,00 | 0,60 |
| Sellerie       | 2,00 | 0,60     | 2,30             | 1,50 | 0,80 |
| Spargel        | 1,20 | 1,00     | 2,50             | 0,60 | 1,10 |
| Spinat         | 1,20 | 0,40     | 1,60             | 0,30 | 0,50 |
| Tomaten        | 2,00 | 0,90     | 3,00             | 3,50 | 0,90 |
| Zwiebeln       | 1,20 | 1,00     | 2,00             | 0,75 | 0,90 |
| Sonderkulturen |      |          |                  |      |      |
| Hopfen         | 1,70 | 0,70     | 2,00             | 1,90 | 0,50 |
| Tabak          | 1,50 | 0,45     | 2,50             | 2,00 | 0,25 |
| Reben          | 1,20 | 0,50     | 1,80             | 1,90 | 0,70 |
| Erdbeeren      | 0,80 | 0,20     | 0,80             | 1,00 | 0,15 |
| Strauchbeeren  | 1,00 | 0,30     | 0,70             | 1,20 | 0,15 |
| Kernobst       | 0,40 | 0,25     | 0,90             | 0,70 | 0,25 |
| Steinobst      | 0,80 | 0,40     | 1,20             | 1,20 | 0,30 |
|                |      |          |                  |      |      |

Die Kali- und Magnesium-Düngung erfolgt im Freilandgemüsebau über sulfatische Düngemittel

Tabelle 3: Mittlere Nährstoffgehalte in Wirtschafts- und Sekundärrohstoffdüngern (n. Landwirtschaftskammer NRW)

|                               | Trocken-      |              |                | Nährst                        | off      |         | ,    |
|-------------------------------|---------------|--------------|----------------|-------------------------------|----------|---------|------|
| Dünger                        | substanz<br>% | Gesamt-<br>N | davon<br>NH₄-N | P <sub>2</sub> O <sub>5</sub> | K₂O      | MgO     | CaO  |
|                               |               | G            | ehalte in      | kg/t in Fris                  | chsubsta | nz (FS) |      |
| Festmist                      |               |              |                |                               |          |         |      |
| Rindermist                    | 23            | 5,5          |                | 3,1                           | 9,2      | 1,4     |      |
| Schweinemist                  | 22            | 7,0          |                | 6,7                           | 7,2      | 2,2     |      |
| Pferdemist                    | 26            | 4,5          |                | 3,7                           | 8,0      | 2,1     |      |
| Putenmist                     | 50            | 14,4         | 4,7            | 18,7                          | 14,8     | 4,8     | 20,0 |
| Hühnermist                    | 48            | 26,9         | 7,1            | 17,2                          | 16,1     | 4,5     | 13,8 |
| Geflügelkot/-mist             |               |              |                | li .                          | l .      | -11     | 1    |
| Hühnerfrischkot               | 28            | 17,1         | 3,0            | 10,9                          | 8,3      | 4,0     | 26,0 |
| Hühnertrockenkot              | 50            | 28,6         | 10,9           | 23,0                          | 20,1     | 7,7     | 56,1 |
| getrockneter Hühner<br>kot    | 70            | 32,1         | 11,0           | 30,9                          | 21,8     | 7,9     | 90,1 |
| Gülle                         |               |              |                | li .                          | l .      | -11     | ı    |
|                               | 6             | 3,2          | 1,8            | 1,4                           | 4,0      | 0,7     |      |
| Milchvieh-/Rindergülle        | 8             | 3,9          | 2,1            | 1,7                           | 4,9      | 0,9     |      |
|                               | 10            | 4,8          | 2,4            | 2,0                           | 5,5      | 1,0     |      |
|                               | 7             | 3,7          | 2,2            | 1,8                           | 4,0      | 0,8     |      |
| Bullengülle                   | 10            | 4,5          | 2,5            | 2,1                           | 5,2      | 1,1     |      |
| Kälbergülle                   | 4             | 3,3          | 2,5            | 1,5                           | 4,2      | 0,6     |      |
|                               | 3             | 4,2          | 3,3            | 1,7                           | 3,0      | 0,7     |      |
| Mastschweinegülle             | 5             | 5,6          | 4,2            | 2,8                           | 3,8      | 1,1     |      |
|                               | 7             | 6,6          | 4,7            | 3,9                           | 4,3      | 1,4     |      |
|                               | 2             | 2,8          | 2,2            | 1,1                           | 2,0      | 0,4     |      |
| Sauengülle                    | 4             | 3,9          | 2,9            | 2,3                           | 2,5      | 0,8     |      |
| Ferkelgülle                   | 5             | 4,6          | 3,3            | 2,4                           | 3,0      | 1,0     |      |
| NA:I                          | 4             | 3,7          | 2,6            | 1,7                           | 3,2      | 0,7     |      |
| Mischgülle                    | 7             | 4,6          | 2,9            | 2,3                           | 4,6      | 1,0     |      |
| Hühnergülle                   | 11            | 8,4          | 5,4            | 5,9                           | 4,3      | 1,3     | 8,5  |
| Jauche                        |               |              |                |                               |          |         |      |
| Rinderjauche                  | 2             | 1,7          | 1,2            | 0,3                           | 4,6      | 0,2     |      |
| Schweinejauche                | 1,5           | 2,8          | 2,5            | 0,4                           | 3,3      | 0,2     |      |
| Sekundärrohstoffdün-<br>ger   |               | "            |                |                               |          | •       |      |
| Grün-/Biokompost (t)          | 50            | 4,9          | 0,2            | 2,6                           | 4,5      | 3,6     | 17,4 |
| Klärschlamm flüssig<br>(m³)   | 5             | 2,7          | 1,1            | 2,5                           | 0,3      | 0,4     | 3,9  |
| Klärschlamm,<br>stichfest (t) | 34            | 9,5          | 1,2            | 15,8                          | 0,8      | 2,4     | 55,5 |

Tabelle 4: Kalkwerte wichtiger Düngemittel

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kalkverlust bzwgewinn in kg CaO                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | je 100 kg N / P <sub>2</sub> O <sub>5</sub> / K <sub>2</sub> O |
| Düngemittel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |
| Stickstoffdünger (% N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                |
| Schwefels. Ammoniak, SSA (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -299                                                           |
| Ammonsulfatsalpeter, ASS (26), ENTEC 26 (26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -196                                                           |
| Ureas (38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -134                                                           |
| Piasan 24 S (24), Alzon flüssig S (24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -122                                                           |
| Harnstoff, Piagran (46), Alzon 47 (47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -100                                                           |
| AHL, Piasan, Alzon flüssig (28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -100                                                           |
| YARA Sulfan (24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -87                                                            |
| Kalkammonsalpeter (27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -55                                                            |
| Optimag 22-3-5 (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -59                                                            |
| Stickstoffmagnesia (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                              |
| Kalksalpeter (15,5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +80                                                            |
| Kalkstickstoff (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +170                                                           |
| Phosphatdünger (% P <sub>2</sub> O <sub>5</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                              |
| Triplesuperphosphat (46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -6                                                             |
| P 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +20                                                            |
| P 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +56                                                            |
| Dolophos (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +400                                                           |
| NP-Dünger (% N, % P <sub>2</sub> O <sub>5</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |
| Monoammonphosphat (11/52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -336                                                           |
| NP-Lösung (10/34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -250                                                           |
| Diammonphosphat (18/46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -210                                                           |
| NP-Dünger (20/20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -90                                                            |
| NP-Dünger (26/14) 18.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -54                                                            |
| NPK-Dünger (% N, % P2O5, % K2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |
| 6/12/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -183                                                           |
| 12/12/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -108                                                           |
| 15/15/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -93                                                            |
| 20/7/10+4S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -115                                                           |
| 20/8/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -96                                                            |
| 13/13/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -92                                                            |
| ENTEC avant (12+7+16(+4+5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -66                                                            |
| PK-Dünger (% P2O5, % K2O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |
| PK 14+14+4 MgO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +35                                                            |
| PK 12+24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +42                                                            |
| Thomaskali 10+15+5 MgO+4S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +240                                                           |
| Thomaskali 7+21+5 MgO+4S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +285                                                           |
| , and the second | 0                                                              |
| Alle Kalium– und Magnesiumeinzeldünger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U                                                              |

Tabelle 5: Zusammensetzung wichtiger Stickstoffdünger

| Produkt                                              | Ges. | Nitrat- | Ammo- | Amid- | Andere N-Formen,                                     |
|------------------------------------------------------|------|---------|-------|-------|------------------------------------------------------|
|                                                      | N    | N       | nium- | N     | weitere Nährstoffe                                   |
|                                                      |      |         | N     |       |                                                      |
|                                                      | %    | %       | %     | %     |                                                      |
| Kalksalpeter                                         | 14,5 | 14,5    | -     | -     | 19 % CaO                                             |
| Kalkammonsalpeter                                    | 27   | 13,5    | 13,5  | -     | 12 % CaO, teilw. Bis<br>4 % MgO (MgCO <sub>3</sub> ) |
| Yara Sulfan                                          | 24   | 12      | 12    | -     | 6 % S                                                |
| Yara Optimag <sup>Plus</sup>                         | 24   | 12      | 12    | -     | 6 % S, 8 % MgO (MgSO                                 |
| Stickstoffmagnesia                                   | 22   | 11      | 11    | -     | 7 % MgO (MgCO3)                                      |
| Ammonsulfatsalpeter                                  | 26   | 7,5     | 18,5  | -     | 13 % S                                               |
| ENTEC 26                                             | 26   | 7,5     | 18,5  |       | 13 % S                                               |
| Schwefelsaures Ammoniak                              | 21   | -       | 21    | -     | 24 % S                                               |
| Ammoniumnitrat-Harnstoff-<br>Lösung (AHL), Piasan 28 | 28   | 7       | 7     | 14    | -                                                    |
| Piasan 24 S                                          | 24   | 5       | 8     | 11    | 3 % S                                                |
| Alzon flüssig                                        | 28   | 6,9     | 7,3   | 13,8  | DCD + 3MP 15:1                                       |
| Alzon flüssig S                                      | 24   | 5       | 8     | 11    | 3 % S; DCD + 3 MP 15:1                               |
| Harnstoff, Piagran 46                                | 46   | -       | -     | 46    |                                                      |
| Ureas                                                | 38   | -       | 6,6   | 31,4  | 7,5 % S                                              |
| Alzon 47                                             | 47   | -       | -     | 44    | 3 % DCD -N                                           |
| Piamon 33 S                                          | 33   | -       | 10    | 23    | 12 % S                                               |
| Perlka (Kalkstickstoff)                              | 19,8 | 1,5     |       |       | Cyanamid-N                                           |

Tabelle 6: Zusammensetzung wichtiger Phosphatdünger

| Produkt                     | P <sub>2</sub> O <sub>5</sub> % | Löslichkeitsform, weitere Nährstoffe,<br>(CaO-Gehalt = theor. basisch wirks.<br>Kalk)                                 |
|-----------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Superphosphat 18            | 18                              | ammoniumcitratlösliches $P_2O_5$ , davon ca. 93 % wasserlöslich, ca. 12 % S                                           |
| Triple-Superphosphat 46     | 46                              | ammoniumcitratlösliches P₂O₅, davon ca.<br>93 % wasserlöslich                                                         |
| Diammonphosphat 18+46       | 46                              | ammoniumcitratlösliches $P_2O_5$ , davon ca. 90 % wasserlöslich, N als $NH_4$                                         |
| P 23 (Novaphos)             | 23                              | mineralsäurelösliches $P_2O_5$ , davon ca. 50 % wasserlöslich; 13 % CaO, 9 % S; teilaufgeschlossenes Rohphosphat      |
| P 35                        | 35                              | mineralsäurelösliches P <sub>2</sub> O <sub>5</sub> , davon ca. 87 % wasserlösliches Phosphat                         |
| Dolophos 15                 | 15                              | mineralsäurelösliches Phosphat, davon 60 % in 2 %iger Ameisensäure, 65 % CaCO <sub>3</sub> und 15 % MgCO <sub>3</sub> |
| Thomaskali<br>10+20+4MgO+4S | 20                              | ammoniumcitratlösliches Phosphat,<br>14% CaO, 4% MgO, 4% S                                                            |
| Thomaskali<br>12+18+4MgO+4S | 18                              | ammoniumcitratlösliches Phosphat,<br>15% CaO, 4% MgO, 4% S                                                            |

Tabelle 7: Zusammensetzung wichtiger Kalidünger

| Produkt                  | K₂O | MgO | Na | S  | Weitere Nährstoffe                   |
|--------------------------|-----|-----|----|----|--------------------------------------|
|                          | %   | %   | %  | %  |                                      |
| Korn-Kali mit 6 %<br>MgO | 40  | 6   | 3  | 4  | K-Chlorid, Mg-Sulfat                 |
| 60er Kali "gran."        | 60  | -   | -  | -  | K-Chlorid                            |
| Magnesia-Kainit          | 11  | 5   | 20 | 4  | K-Chlorid, Na-<br>Chlorid, Mg-Sulfat |
| Kaliumsulfat "gran."     | 50  | -   | -  | 18 | K-Sulfat                             |
| Patentkali               | 30  | 10  | -  | 17 | K-Sulfat, Mg-Sulfat                  |

Tabelle 8: Zusammensetzung wichtiger Magnesiumdünger und magnesiumhaltiger Dünger

| Produkt                        | MgO<br>% | \$<br>% | Magnesiumform, weitere<br>Nährstoffe           |
|--------------------------------|----------|---------|------------------------------------------------|
| Kieserit "fein"                | 27       | 22      | Magnesiumsulfat-Monohydrat                     |
| Kieserit "gran."               | 25       | 20      | Magnesiumsulfat-Monohydrat                     |
| EPSO Top                       | 16       | 13      | Magnesiumsulfat * 7 H2O                        |
| EPSO Microtop                  | 15       | 12      | Magnesiumsulfat 1 % B, 1 % Mn (wasserlöslich)  |
| EPSO Combitop                  | 13       | 13      | Magnesiumsulfat 1 % Zn, 4 % Mn                 |
| Patentkali                     | 10       | 17      | Magnesiumsulfat, Kalium                        |
| Yara Optimag <sup>Plus</sup>   | 8        | 6       | Magnesiumsulfat, Stickstoff                    |
| Stickstoffmagnesia/<br>Stimag  | 7        | -       | Magnesiumcarbonat                              |
| Kohlensaurer<br>Magnesiumkalk  | 8 - 17   | -       | Magnesiumcarbonat                              |
| Magnesium-<br>Mischkalk        | 15-25    |         | Magnesiumcarbonat +<br>Magnesiumoxid           |
| Magnesium-Branntkalk           | 15 - 35  | -       | Magnesiumoxid                                  |
| Konverterkalk<br>feucht-körnig | 5        | -       | Magnesiumsilikat                               |
| PK-Dünger mit<br>Magnesium     | 3 - 6    | 2 - 6   | Magnesiumcarbonat +<br>Magnesiumsulfat         |
| Thomaskali                     | 4 - 6    | 4 – 5   | Magnesiumsilikat +<br>Magnesiumsulfat          |
| MND z.B. 12x12x17x2            | 2        |         | Magnesiumcarbonat und/<br>oder Magnesiumsulfat |

Tabelle 9: Zusammensetzung wichtiger Kalkdünger:

| Produkt                                                   | Kalkform                                         | Kalkgehalt<br>(CaO %) | weitere Nährstoffe/<br>Nebenbestandteile                                          |
|-----------------------------------------------------------|--------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------|
| Branntkalk                                                | CaO                                              | 65 – 90               | z. T. MgO                                                                         |
| Magnesiumbranntkalk                                       | CaO/MgO                                          | 85 – 90               | 15 - 35 % MgO                                                                     |
| Mischkalk                                                 | CaO/CaCO₃                                        | 55 – 75               | z. T. MgO                                                                         |
| Magnesiummischkalk                                        | CaO /MgO<br>CaCO <sub>3</sub> /MgCO <sub>3</sub> | 55 - 70               | > 15 % MgO/ MgCO <sub>3</sub>                                                     |
| Kohlensaurer Kalk                                         | CaCO <sub>3</sub>                                | 47 -53                | z. T. MgCO <sub>3</sub>                                                           |
| Kohlensaurer Magne-<br>siumkalk                           | CaCO <sub>3</sub> /MgCO <sub>3</sub>             | 45 – 50               | 15 - 40 % MgCO <sub>3</sub>                                                       |
| Kohlens. Magnesium-<br>kalk mit Phosphat<br>und/oder Kali | CaCO <sub>3</sub> /MgCO <sub>3</sub>             | 30 – 44               | MgCO <sub>3</sub> > 3 % P <sub>2</sub> O <sub>5</sub> ,<br>> 3 % K <sub>2</sub> O |
| Konverterkalk<br>feucht-körnig                            | Ca- + Mg-Silikate                                | 43                    | 5 % MgO, ca. 12 % lösl. Kieselsäure (SiO $_2$ ), Spurennährstoffe                 |
| Rückstandskalk                                            | CaCO <sub>3</sub><br>CaO<br>Ca(OH) <sub>2</sub>  | > 30                  | z. T. MgO, Spurennähr-<br>stoffe                                                  |

Tabelle 10a: Düngemittelverordnung vom 19.12.2008, Vorgaben für Kalkdünger

| Typenbezeich-<br>nung | Mindestgehalte         | Typenbestimmende<br>Bestandteile<br>Nährstoffformen<br>Nährstofflöslichkeiten | Angaben zur<br>Nährstoffbewertung<br>Weitere Erfordernisse                                                                                                                                         | Wesentliche Zusammensetzung<br>Art der Herstellung                                                                                                                                                                                                     | Besondere Bestimmungen<br>(Auszüge)                                                                                                                                                                                                                                                                                                                                          |
|-----------------------|------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                     | 2                      | ဇ                                                                             | 4                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                            |
| Kohlensaurer Kalk     | 75 % CaCO <sub>3</sub> | Calciumcarbonat                                                               | Kalk bewertet als CaCO <sub>3</sub> Siebdurchgang: 97 % bei 3.15 mm 70 % bei 1,0 mm Reaktivität: mindestens 30 %, bei MgCO <sub>3</sub> > 25 % mindestens 10 % Toleranzen: 4,0 % CaCO <sub>3</sub> | Calciumcarbonat, daneben auch Magnesiumcarbonat a) aus Kreide, Kalkstein und Dolomit natürlicher Lagerstätten; oder b) aus Meeresalgen auch Zugabe von: a) Magnesiumcarbonat b) Azotobakter auf Torf c) Brennraumasche von unbehandelten Pflanzen nach | Bezeichnung als "leicht umsetzbar", wenn Reaktvität > 80 % Bei Herstellung aus Meeresalgen: Mindestgehalt: 65 % CaCO3 keine Mischung mit anderen kohesauren Kalken Bei Herstellung: aus jungem Muschelkalk: Mindestgehalt: 60 % CaCO3 keine Mischung mit anderen kohlesauren Kalken Bei der Zugabe von Brenntaumasche: Maximal 30 % Brenntaumasche Mindestgehalt: 70 % CaCO3 |
| Branntkalk            | 65 % CaO               | Calciumoxid                                                                   | Kalk bewertet als CaO Beim Inverkehrbringen nicht mehr als 9 % CaO als Cal- ciumcarbonat Siebdurchgang: 97 % bei 6,3 mm Toleranzen: 4,0 % CaO                                                      | Calciumoxid, daneben auch Mag-<br>nesiumoxid<br>Aus Kalkstein, Dolomit oder Kreide natürlicher Lagerstätten<br>durch Brennen                                                                                                                           | Bezeichnung als "Branntkalk<br>körnig" oder<br>"Magnesiumbranntkalk kör-<br>nig", wenn zusätzlich folgende<br>Anforderung erfüllt wird:<br>Siebdurrchgang:<br>bis zu 5 % bei 0,4 mm                                                                                                                                                                                          |
| Mischkalk             | 55 % CaO               | Calciumoxid                                                                   | Kalk bewertet als CaO Max. 75 % des CaO als Carbonat Siebdurchgang: 97 % bei 4 mm 50 % bei 0,8 mm Toleranzen (CaO): Carbonatanteil > 65%: 3,0% Carbonatanteil > 65%: 4,0%                          | Calciumcarbonat, -hydroxid oder<br>Calciumoxid, daneben auch Mag-<br>nesiumcarbonat, -hydroxid oder<br>Magnesiumoxid<br>Aus Kalkstein, Dolomit oder Krei-<br>de natürlicher Lagerstätten durch<br>Mischen oder Brennen, auch teil-<br>weises Brennen   | Bezeichnung nach Spalte 1<br>gilt auch für recarbonatisierten<br>Branntkalk.                                                                                                                                                                                                                                                                                                 |

Tabelle 10b: Fortsetzung Düngemittelverordnung vom 19.12.2008, Vorgaben für Kalkdünger

| Typenbezeich-<br>nung                                                         | Mindestgehalte                  | Typenbestimmende<br>Bestadteile<br>Nährstoffformen<br>Nährstofflöslichkeiten | Angaben zur<br>Nährstoffbewertung<br>Weitere Erfordernisse                                                                                                                                                  | Wesentliche Zusammenset-<br>zung<br>Art der Herstellung                                                                                                                                          | Besondere Bestimmungen<br>(Auszüge)                                                                                                                            |
|-------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                                                                             | 7                               | ო                                                                            | 4                                                                                                                                                                                                           | 5                                                                                                                                                                                                | 9                                                                                                                                                              |
| Hűttenkalk                                                                    | 42 % CaO                        | Calciumoxid                                                                  | Kalk bewertet als CaO<br>Siebdurchgang:<br>a) 97 % bei 1,0 mm<br>80 % bei 0,315 mm<br>oder<br>b) 97 % bei 3,15 mm<br>Toleranzen: 3,0 % CaO                                                                  | Silikate von Calcium und Magne-<br>sium<br>aus Hochofenschlacke                                                                                                                                  | Bei Siebdurchgang nach Spalte<br>4 Buchstabe b muss das Dün-<br>gemittel mit einem<br>Hinweis auf eine stark verlang-<br>samte Wirkung gekennzeichnet<br>sein. |
| Konverterkalk                                                                 | 40 % CaO                        | Calciumoxid                                                                  | Kalk bewertet als CaO Siebdurchgang bei Herstel- lung nach Spalte 5 Buchstabe: a) 97 % bei 1,0 mm 80 % bei 0,315 mm 40 % bei 0,315 mm 40 % bei 0,315 mm mindestens 30 % Toleranzen: 3,0 % CaO               | Silikate von Calcium und Magne-<br>sium aus der Herstellung unle-<br>gierter Stähle  a) Vermahlen von Konverter-<br>schlacke b) Absieben zerfallener<br>Konverterschlacke und<br>Pfannenschlacke | Ausgangsstoffe und Art der<br>Herstellung nach Spalte 5<br>müssen angegeben sein.                                                                              |
| Kalkdünger aus<br>(zulässige Herkünftes sind im Düngemittelrecht festgelegt.) | 30 % CaO in der<br>Trockenmasse | Calciumoxid                                                                  | Kalk bewertet als CaO Basisch wirksame Bestand- telle bewertet als CaO Reaktivität mindestens 30 %, bei MgCO <sub>3</sub> > 25 % 10 % Toleranzen (CaO): Carbonatanteil < 40 %: 2% Carbonatanteil > 40 %: 3% | Oxide, Hydroxide, Silkate oder<br>Carbonate von Calcium und<br>Magnesium<br>Aus nur einem Stoff nach Festle-<br>gung laut Düngemittelverordnung                                                  | In der Typenbezeichnung ist<br>der Klammerausdruck durch<br>die Angabe der Herkunft zu<br>ersetzen.                                                            |

Tabelle 11: Zusammensetzung wichtiger schwefelhaltiger Dünger:

| Produkt                       | S %   | Sonstige Nährstoffe %                                        |
|-------------------------------|-------|--------------------------------------------------------------|
| N-Einzeldünger                |       |                                                              |
| Alzon flüssig S               | 3     | 24 N                                                         |
| Ammonsulfat                   | 24    | 21 N                                                         |
| Ammonsulfatsalpeter, Entec 26 | 13    | 26 N                                                         |
| YARA Sulfan                   | 6     | 24 N                                                         |
| Piamon 33 S                   | 12    | 33 N                                                         |
| Piasan 24 S                   | 3     | 24 N                                                         |
| P-Einzeldünger                |       |                                                              |
| Superphosphat                 | 12    | 18 P <sub>2</sub> O <sub>5</sub>                             |
| P 23                          | 9     | 23 P <sub>2</sub> O <sub>5</sub>                             |
| K-Einzeldünger                |       |                                                              |
| Korn-Kali                     | 4     | 40 K <sub>2</sub> O, 6 MgO                                   |
| Patentkali                    | 17    | 30 K <sub>2</sub> O, 10 MgO                                  |
| Kaliumsulfat                  | 18    | 50 K <sub>2</sub> O                                          |
| Mg-Einzeldünger               |       |                                                              |
| Kieserit                      | 20    | 27 MgO                                                       |
| EPSO Top                      | 13    | 16 MgO                                                       |
| Kalkdünger                    |       |                                                              |
| Granukal S                    | 3     | 85 CaCO₃                                                     |
| PK-Dünger                     |       |                                                              |
| Thomaskali 8+15+6+5S          | 5     | 8 P <sub>2</sub> O <sub>5</sub> , 15 K <sub>2</sub> O, 6 MgO |
| Rhe-Ka-Phos 12+24 (+0+6)      | 6     | 12 P <sub>2</sub> O <sub>5</sub> , 24 K <sub>2</sub> O       |
| NPK-Dünger                    | 2 – 8 | $N, P_2O_5, K_2O, MgO$                                       |

Tabelle 12: Zusammensetzung wichtiger natriumhaltiger Dünger:

|                           | _       | _        |                                                                            |                                                              |
|---------------------------|---------|----------|----------------------------------------------------------------------------|--------------------------------------------------------------|
| Produkt                   | Na<br>% | MgO<br>% | sonstige Nährstoffe                                                        | Nährstoffform                                                |
| Magnesia-Kainit           | 20      | 5        | 11 % K <sub>2</sub> O, 4 % S                                               | Rohsalz = Steinsalz<br>K in Chloridform,<br>Mg in Sulfatform |
| Kornkali 40/6             | 3       | 6        | 40 % K <sub>2</sub> O, 4 % S                                               | K in Chloridform                                             |
|                           |         |          |                                                                            | Mg in Sulfatform                                             |
| Thomaskali 11+11+6 MgO+5S | 3       | 6        | 16 % CaO + MgO<br>je 11 % P <sub>2</sub> O <sub>5</sub> , K <sub>2</sub> O | K in Chloridform                                             |

Tabelle 13: Zusammensetzung wichtiger Mehrnährstoffdünger

| N<br>%          | P <sub>2</sub> O <sub>5</sub> % | K₂O<br>% | MgO<br>% | Bemerkungen                                                                                                                                                                                                                                  |
|-----------------|---------------------------------|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. P-(Mg)       | )-Dünger                        |          |          |                                                                                                                                                                                                                                              |
| -               | 15-22                           | -        | 7        | Mg-Novaphos                                                                                                                                                                                                                                  |
| 2. PK-(M        | g)-Dünger                       |          |          |                                                                                                                                                                                                                                              |
| -               | 7-25                            | 7-30     | 0-12     | Rhe-Ka-Phos, Thomaskali, PK-Dünger (Teil-aufschluss), Sorten mit bis zu 18 % CaO; bis 9 % S; bis 6 % SiO <sub>2</sub> PK-Dünger mit kohlens. Magnesiumkalk P <sub>2</sub> O <sub>5</sub> -Löslichkeiten siehe vergleichbare "Phosphatdünger" |
| 3. NK-Dü        | <u>inger</u>                    |          |          |                                                                                                                                                                                                                                              |
| 18-19           | -                               | 16-18    | 2        | Vom N 50 Anteile NO₃-N                                                                                                                                                                                                                       |
| <u>4. NP-Dü</u> | <u>inger</u>                    |          |          |                                                                                                                                                                                                                                              |
| 20-26           | 14-20                           | -        | -        | Yara, Nitrophos; 5-11 % CaO vom N ca. 40 % NO $_3$ -N; vom P $_2$ O $_5$ ca. 50-85 % wasserlöslich                                                                                                                                           |
| 10              | 34                              | -        | -        | Hydro Terra, flüssige NP-Dünger                                                                                                                                                                                                              |
| 25              | 15                              |          |          | ENTEC 25+15, 11 % NO3-N, 13 % NH4-N stabilisiert, P2O5 ca. 80 % wasserlöslich                                                                                                                                                                |
| 18              | 46                              | -        | -        | Diammonphosphat; N als NH <sub>4</sub> ; P <sub>2</sub> O <sub>5</sub> zu 90 % wasserlöslich                                                                                                                                                 |
| 12              | 54                              | -        | -        | Kemira (Monoammonphosphat); $P_2O_5$ zu 90 % wasserlöslich                                                                                                                                                                                   |
| 5. NPK-(        | Mg)-Dünge                       | <u>r</u> |          |                                                                                                                                                                                                                                              |
| 6-24            | 4-16                            | 7-21     | 0-4      | Yara, Nitrophoska; vom N 20-45 % als $NO_3$ -N, sonst $NH_4$ -N; vom $P_2O_5$ 55-90 % wasserlöslich, im Übrigen citratlöslich;                                                                                                               |
|                 |                                 |          |          | K₂O meist Chlorid; spezielle Formeln je zur<br>Hälfte Chlorid und Sulfat oder nur Sulfat;                                                                                                                                                    |
|                 |                                 |          |          | bis 8 % S; bis 17 % CaO; teilweise mit Spurennährstoffen                                                                                                                                                                                     |

Die Mehrnährstoffdünger haben heute einen beachtlichen Marktanteil. Wegen der großen Zahl und Vielfalt der Düngemittel können in dieser Übersicht nicht alle Einzeldaten gebracht werden. Die Hersteller geben gerne Auskunft bei speziellen Fragen.

# Tabelle 14: Bestimmungsschlüssel für wichtige Mangelsymptome (n. FINCK: Pflanzenernährung in Stichworten)

## A. Getreide (Gräser)

| I. Symptome an <i>älteren</i> Blättern                                                                                                                                                 | Mangel |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| <ol> <li>Blätter dunkelgrün und aufrecht (Starrtracht), oft rötliche Ver-<br/>färbungen auch am Stängel (häufig kombiniert mit anderen<br/>Symptomen des "Säurekomplexes").</li> </ol> | P      |
| <ol><li>Grüne Blätter am Rand gelb bzw. häufig braun (Randchlorose<br/>bzw. Randnekrose), Blätter schlaff (Welketracht).</li></ol>                                                     | K      |
| <ol> <li>Pflanze hellgrün, Blätter meist von der Spitze her gleichmäßig<br/>gelblich (Spitzenchlorose), älteste Blätter braun.</li> </ol>                                              | N      |
| <ol> <li>Gelbliche Längsstreifen zwischen den Blattadern<br/>(Streifenchlorose), Reste des Blattgrüns perlschnurartig<br/>aufgereiht.</li> </ol>                                       | Mg     |
| <ol><li>Ältere und mittlere Blätter gelbgrün mit braunen oder weißlichen<br/>Flecken (kaum auf sauren Böden).</li></ol>                                                                | Mn     |
| Hafer: grau-braune streifenförmige Flecken in unterer Blatthälfte,<br>Spitze bleibt noch lange grün (Dörrfleckenkrankheit).                                                            | Mn     |
| Gerste: dunkelbraune streifenförmige Flecken vorwiegend in oberer Blatthälfte.                                                                                                         | Mn     |
| Roggen und Weizen: weiße oder graue streifenförmige Flecken vorwiegend in oberer Blatthälfte.                                                                                          | Mn     |
| II. Symptome an <i>jüngeren</i> Blättern                                                                                                                                               |        |
| 1. Gelbgrüne Blätter mit hellgelben Adern, meist ohne Nekrosen.                                                                                                                        | S      |
| <ol><li>Gelbe bis gelbweiße Blätter mit grünen Adern (meist auf kalk-<br/>haltigen Böden oder Hochmoor).</li></ol>                                                                     | Fe     |
| <ol> <li>Weißliche, fadenförmig verdrehte Blattspitzen (Weißspitzigkeit,<br/>Heidemoorkrankheit), vor allem bei Hafer und Gerste.</li> </ol>                                           | Cu     |
| 4. Gelbliche Blätter und meist abgestorbene Endknospe                                                                                                                                  |        |
| a) oft kombiniert mit sonstigen "Säureschäden", z.B. braune Flecken.                                                                                                                   | Ca     |
| b) auf nicht stark sauren Böden (sehr selten).                                                                                                                                         | В      |

#### III. Sonstige Symptome

Da im Allgemeinen zuerst ein einzelner Nährstoff ins Minimum gerät, ist meist eine ziemlich sichere Diagnose auf Grund von Einzel-Mangelsymptomen möglich. Folgende Ausnahmen sind aber zu beachten:

Bei Schäden an älteren und jüngeren Blättern in fortgeschrittenen Stadien zum Vergleich Pflanzen im Anfangsstadium des Mangels aufsuchen.

Kombination von mehreren Symptomen bei Komplexschäden, z.B. beim "Säureschaden"-Komplex: braune und rötliche Flecken auf gelblichen Blättern (bedingt z.B. durch Mangel an P, Ca, Mo und Überschuss an Aluminium und Mangan\*).

Schäden als Folge einer (fehlerhaften) Düngung: z.B. Schwarzfleckigkeit der Gerste, bedingt durch Bor-Überschuss als Folge der Vorfruchtdüngung oder braune Blattspitzen als Folge einer Ätzung bei Blattdüngung oder -spritzung.

Schäden durch Einflüsse des Klimas (Kälte, Sturm, Hagel) oder durch Parasiten, die mit bloßem Auge nicht wahrnehmbar sind.

## B. Betarüben, Kartoffeln, Kohlarten (einschl. Raps)

| Mangel |
|--------|
| . Р    |
| K      |
| N      |
| Mg     |
| Mg     |
| Mn     |
|        |
| S      |
| Fe     |
| Mn     |
| В      |
| Мо     |
|        |

III. Sonstige Symptome (siehe bei Getreide unter III.).

<sup>\*</sup>braun-schwarze bis schwarze Punkte entlang der Blattnervatur (Durchsicht)

# C. Leguminosen

| I. Symptome an <i>älteren</i> Blättern                                                                                                                                      | Mangel |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1. Blätter dunkelgrün und aufrecht, oft rötlich (Blattunterseite).                                                                                                          | P      |
| <ol><li>Grüne Blätter am Rand gelb bzw. häufig hellbraun (oft punktförmig),<br/>Blätter schlaff (Welketracht).</li></ol>                                                    | K      |
| <ol> <li>Pflanze hellgrün, Blätter von der Spitze her gelblich (Fehlen der<br/>Symbiosebakterien oder Mangel an Molybdän etc. verhindert<br/>Stickstoffbindung).</li> </ol> | N      |
| <ol> <li>Blätter zwischen den Adern meist von der Blattmitte her gelblich,<br/>Rand häufig noch länger grün.</li> </ol>                                                     | Mg     |
| II. Symptome an <i>jüngeren</i> Blättern                                                                                                                                    |        |
| Gelbgrüne Blätter, oft mit braunen oder grauen Flecken und      Grünen Adem: Chloroco meist vom Bend ber: Braunherrigkeit                                                   |        |
| grünen Adern; Chlorose meist vom Rand her; Braunherzigkeit der Körner.                                                                                                      | Mn     |
| 2. Gelbgrüne Blätter mit hellgelben Adern.                                                                                                                                  | s      |
| 3. Gelbe bis gelbweiße Blätter mit grünen Adern.                                                                                                                            | Fe     |
| 4. Weißliche vertrocknete Blätter.                                                                                                                                          | Cu     |
| 5. Gelbliche Blätter und meist abgestorbene Endknospe.                                                                                                                      |        |
| a) mit braunen Flecken (meist auf sauren Böden),                                                                                                                            | Ca     |
| b) mit oft rötlicher Verfärbung.                                                                                                                                            | В      |
|                                                                                                                                                                             |        |

# Tabelle 15: Entwicklungsstadien der Kulturpflanzen (BBCH-Code)

## Getreide

| Code  | Beschreibung                                  | Code | Beschreibung                               |
|-------|-----------------------------------------------|------|--------------------------------------------|
| 01-09 | Keimung bis Auflaufen                         | 51   | Beginn Ährenschieben                       |
| 10    | Laubblatt aus Keimscheide ausgetreten         | 59   | Ende Ährenschieben                         |
| 11    | 1. Laubblatt entfaltet                        | 61   | Beginn Blüte                               |
| 13    | 3. Laubblatt entfaltet                        | 69   | Ende Blüte                                 |
| 21    | Bestockungstrieb sichtbar                     | 71   | Beginn Kornbildung                         |
| 23    | 3. Bestockungstrieb sichtbar                  | 75   | Mitte Milchreife, Korninhalt milchig       |
| 30    | Beginn Schossen                               | 85   | Teigreife, Korninhalt weich, trocken       |
| 31    | 1. Knoten                                     | 87   | Gelbreife, Fingernageldruck bleibt         |
| 32    | 2. Knoten                                     | 89   | Vollreife, Korn hart                       |
| 37    | Erscheinen Fahnenblatt                        | 92   | Totreife, mit Daumennagel nicht zu brechen |
| 39    | Fahnenblatt entfaltet, Blatthäutchen sichtbar | 99   | Erntegut                                   |
| 49    | Grannenspitzen                                |      |                                            |

# Raps

| Code  | Beschreibung                                | Code | Beschreibung                                 |
|-------|---------------------------------------------|------|----------------------------------------------|
| 01-09 | Keimung bis Auflaufen                       | 60   | Erste offene Blüten                          |
| 10    | Keimblätter voll entfaltet                  | 63   | 30 % der Blüten am Haupttrieb of-<br>fen     |
| 11    | 1. Laubblatt entfaltet                      | 65   | 50 % der Blüten am Haupttrieb of-<br>fen     |
| 13    | 3. Laubblatt entfaltet                      | 67   | Abgehende Blüte (meistens Blüten abgefallen) |
| 14-19 | 4. bis 9. Laubblatt entfaltet               | 69   | Ende Blüte                                   |
| 30    | Beginn Längenwachstum                       | 71   | 10 % der Schoten haben endgültige Größe      |
| 31    | 1. sichtbar gestrecktes Internodium         | 75   | 50 % der Schoten haben endgültige Größe      |
| 32    | 2. sichtbar gestrecktes Internodium         | 79   | alle Schoten haben endgültige<br>Größe       |
| 33    | 3. sichtbar gestrecktes Internodium         | 81   | 10 % der Schoten ausgereift                  |
| 39    | 9 und mehr gestreckte Internodien           | 83   | 30 % der Schoten ausgereift                  |
| 51    | Hauptinfloreszenz von oben sicht-<br>bar    | 87   | 70 % der Schoten ausgereift                  |
| 55    | Einzelblüten der Hauptinfloreszenz sichtbar | 89   | Vollreife (alle Samen schwarz und hart)      |
| 57    | Einzelblüten der sek. Infloreszenz sichtbar | 97   | Pflanze abgestorben                          |
|       |                                             | 99   | Erntegut                                     |

# Rüben

| Code  | Beschreibung                                                                 |
|-------|------------------------------------------------------------------------------|
| 01-09 | Keimung bis Auflaufen                                                        |
|       | Keimblätter waagerecht entfaltet                                             |
| 11    | 1. Laubblatt erbsengroß                                                      |
| 12    | 2 Laubblätter entfaltet (1. Laubblattpaar)                                   |
| 14    | 4 Laubblätter entfaltet (2. Laubblattpaar)                                   |
| 19    | 9 und mehr Laubblätter entfaltet                                             |
| 31    | Beginn Bestandesschluss, 10 % der Pflanzen benachbarter Reihen berühren sich |
| 33    | 30 % der Pflanzen benachbarter Reihen berühren sich                          |
| 39    | Bestandesschluss                                                             |
| 49    | Rübenkörper mit erntefähiger Größe                                           |

## Mais

| Code  | Bezeichnung                     | Code | Beschreibung                                                            |
|-------|---------------------------------|------|-------------------------------------------------------------------------|
| 01-09 | Keimung bis Auflaufen           | 61   | Beginn Blüte                                                            |
| 10    | Laubblatt tritt aus Keimscheide | 63   | Pollenschüttung beginnt, Narben-<br>fäden werden sichtbar               |
| 11    | 1. Laubblatt entfaltet          | 65   | Narbenfäden vollständig geschoben                                       |
| 13    | 3. Laubblatt entfaltet          | 69   | Ende Blüte                                                              |
| 30    | Beginn Längenwachstum           | 71   | Beginn Kornbildung                                                      |
| 31    | 1. Knoten wahrnehmbar           | 75   | Mitte Milchreife, Korninhalt milchig,<br>ca. 40 % TS im Korn            |
| 32    | 2. Knoten wahrnehmbar           | 79   | Maximale Korngröße erreicht                                             |
| 33    | 3. Knoten wahrnehmbar           | 85   | Teigreife, Korn gelblich, teigig, "Siloreife", ca. 55 % TS im Korn      |
| 34    | 4. Knoten wahrnehmbar           | 87   | Physiologische Reife, am Korn-<br>grund schwarzer Punkt, ca. 60 %<br>TS |
| 53    | Spitze der Rispe sichtbar       | 89   | Vollreife, Körner hart und glän-<br>zend, ca. 65 % TS im Korn           |
| 55    | Mitte Rispenschieben            | 97   | Pflanze abgestorben                                                     |
| 59    | Ende Rispenschieben             | 99   | Erntegut                                                                |

## Kartoffeln

| Code  | Beschreibung                                                                  | Code  | Beschreibung                                                                            |
|-------|-------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------|
| 01-09 | Keimung bis Auflaufen                                                         | 45    | 50 % der Knollenmasse erreicht                                                          |
| 10    | Erste Blätter spreizen sich ab                                                | 48    | Max. Knollenmasse erreicht,<br>Schale lässt sich mit dem Daumen<br>abschieben           |
| 11    | Blatt (>4 cm) am Hauptspross entfaltet                                        | 49    | Knollen schalenfest, bei 95 % der<br>Knollen lässt sich Schale nicht<br>mehr abschieben |
| 12    | 2. Blatt (>4 cm) am Hauptspross entfaltet                                     | 51-59 | Erscheinen der Blütenanlagen                                                            |
| 19    | 9 und mehr Blätter am Hauptspross<br>entfaltet                                | 60-69 | Blüte                                                                                   |
| 21    | 1. basaler Seitentrieb (>5 cm) ge-<br>bildet                                  | 70-79 | Fruchtentwicklung                                                                       |
| 22    | 2. basaler Seitentrieb (>5 cm) ge-<br>bildet                                  | 81-89 | Frucht- und Samenreife                                                                  |
| 23    | 3. basaler Seitentrieb (>5 cm) ge-<br>bildet                                  | 91    | Beginn der Blattvergilbung                                                              |
| 31    | Beginn Bestandesschluss (10 % der Pflanzen benachbarter Reihen berühren sich) | 95    | 50 % der Blätter braun verfärbt                                                         |
| 33    | 30 % der Pflanzen berühren sich                                               | 97    | Blätter und Stängel abgestorben                                                         |
| 40    | Beginn Knollenanlage                                                          | 99    | Erntegut (Knollen)                                                                      |
| 43    | 30 % der Knollenmasse erreicht                                                |       |                                                                                         |