

Translating novel results from plant microbiome research into biotechnological applications

Henry Müller TU Graz AUSTRIA Biotenzz GmbH

Symposium Biostimulanzien, Industrieverband Agrar Künzell, 18. September 2019

PROBLEM: Biodiversity loss world-wide

Anthropocene:

Human activity and intense agriculture caused:

- √ altered biogeochemical cycles
- ✓ Biodiversity loss 100 to 1,000 times higher than usual
- ✓ Salinated and degraded soils
- ✓ Increasing problems to control pathogens and resistances

BIODIVERSITY & RESILIENCE LOSS

Solutions: Microbial Inoculants

The Institute of Environmental Biotechnology

Understanding

- **Plant microbiome** (Understanding of native and crop plants, endophytes, life cycles)
- Inter-linked microbiomes (Plant build environment, plant soil, plant human)
- Microbiome and plant and human health

Head **Prof. Gabriele Berg**

Engineering

- **Microbials** to protect plants against biotic and a-biotic stress
- **Bioactive compounds** (especially volatiles) to control microbiomes

Formulation technologies for microbials

Our vision: Microbiome-based solutions for one health

Plant microbial diversity The seed is an optimal carrier for microbial inoculants

1. Which microbial diversity is associated with pumpkins?

Туре	Denomination	Pedigree	Geographic origin	Seed samples
Homozygous inbred lines	Line A - D	-	Austria	数线
Single cross hybrid	Gleisdorfer Diamant	Line A x Line B	Austria	
Three-way cross hybrids	GL Opal GL Rustikal	Gl. Diamant x Line C Gl. Diamant x Line D	Austria	
Population cultivar	GL Classic		Austria	
Single cross zucchini hybrid	Naxos	-	Netherlands	
Segregating breeding lines	Line E – I		Germany, Slovenia, China	

The microbiome was shaped by breeding The microbiome correlated with resistance against *Erwinia carotovora*

[Adam et al. Plant and Soil 2016]

1. Which microbial diversity is associated with pumpkins?

MATERNAL Microbiota
Bacteria on the petal of the
withered female oil pumpkin
flower visualized by CLSM and
FISH. 3D construction by IMARIS.

1. Which microbial diversity is associated with pumpkins?

1. Which microbial biodiversity is associated with tomatoes?

1. Which microbial biodiversity is associated with tomatoes?

1. Seeds transmit a functional core microbiome

Oilseed Rape

- Verticillium longisporum
- Serratia & Paenibacillus

Sugar beet

- Rhizoctonia solani
- Pseudomonas poae

The microbiome correlates with resistance

[Rybakova et al. Microbiome 2017, Zachow et al., unpublished data]

CONCLUSION: The plant microbiome

The Plant microbiome

- Was shaped by co-evolution
- Has important function for the holobiont
- Is vertically transmitted by seeds
- Was shaped by breeding
- Is specific for plant species
- Changed during plants life cycle

A healthy plant microbiome is highly diverse, rich and evenly structured.

The seed is an ideal carrier for microbials.

Solution: Improving the seed microbiome

❖ Bridging the gap between research and industry

- ❖ Spin-off company associated with the Institute of Environmental Biotechnology
- ❖ Our expertise: Novel formulations for enhanced shelf-life of microbial products

Innovative research:

- Cutting edge ideas & concepts
- Open minded & flexible research
- Ressources: Brains, Equipment, Strain collection

Early-phase product development:

- Anticipate industrial demands
- Proof of principle
- Upscaling
- Increase of feasibility

Industry

Long-term business development:

- Less flexible & risky
- Limited availability of specific R&D capacities
- Limited access to funding

€ Long-term collaboration Increased success rate

Market situation evinces the current bottleneck for commercialization of microbial products

Firmicutes-based products dominate market

Studies reveal greater potential of Gramnegatives

Our aim: A key technology enabling exploitation of full microbial potential for agriculture

Major achievement after 7 years of hard work

"Bacterial & Fungal Conservation Technology"

BFC technology is an unique formulation process, that

- Breaks limitation of using only spore-forming bacteria
- Flexibility allows application for a broad spectrum of microbial groups
- Produces highly stable products containing Gram-negatives
- Enhances the shelf-life of sensitive bacteria from several weeks to more than one year
- Is suitable for industrial-scaled processes

Abiotic-stress-protecting agent: Stenotrophomonas rhizophila SPA P69

Field & Greenhouse trials in Uzbekistan

 Elevate stress tolerance of plants exposed to salinity and high temperatures

Field & Greenhouse trials in Austria

 Improves germination rate and drought tolerance in maize, oilseed rape, tomato, sweet pepper

Survival rates of formulated *S. rhizophila*

Stress protecting agent
Stenotrophomonas rhizophila
SPA P69

Bacterial & Fungal conservation technology

Survival rates of formulated S. rhizophila

Serratia sp.
Pseudomonas sp.
Lysobacter sp.
Stenotrophomonas sp.

Stenotrophomonas rhizophila SPA P69

(Stress protecting agent)

Storage conditions: 36 weeks at 30°C

Rhizobium fredii Bradyrhizobium japonicum Bradyrhizobium elkanii Azotobacter sp.

Rhizobium fredii DSM-5851

Storage conditions: 30 weeks at 30°C

3-bacteria mixture

 Combats late root rot (Rhizoctonia solani) in sugar beet

7-bacteria mixture

- Enhances seed germination
- Seedling's growth and health

4-bacteria + fungus mixture

- Improves seed germination and plant health
- Increases yield

Successful translation from idea to industrial application!

Translation

